If
Find the value of
rohitkumargupta:
hey
Answers
Answered by
2
Hi ,
It is given that ,
x = 3 + √2
√x = √ ( 3 + √2 )
= √ [ ( 2 + 1 ) + 2 ( 2 × 1 )
√x = √2 + 1 ---- ( 1 )
1/√x = 1/ ( √2 + 1 )
= ( √2 - 1 ) / [ ( √2 + 1 ) ( √2 - 1 ) ]
= ( √2 - 1 ) / [ ( √2 )² - 1² ]
= ( √2 - 1 ) / ( 2 - 1 )
1/√x = √2 - 1 ----( 2 )
a ) value of ( √x + 1/√x )
= ( 1 ) + ( 2 )
= √2 + 1 + √2 - 1
= 2√2
b ) value of ( √x - 1/√x )
= ( √2 + 1 ) - ( √2 - 1 )
= √2 + 1 - √2 + 1
= 2
I hope this helps you.
:)
It is given that ,
x = 3 + √2
√x = √ ( 3 + √2 )
= √ [ ( 2 + 1 ) + 2 ( 2 × 1 )
√x = √2 + 1 ---- ( 1 )
1/√x = 1/ ( √2 + 1 )
= ( √2 - 1 ) / [ ( √2 + 1 ) ( √2 - 1 ) ]
= ( √2 - 1 ) / [ ( √2 )² - 1² ]
= ( √2 - 1 ) / ( 2 - 1 )
1/√x = √2 - 1 ----( 2 )
a ) value of ( √x + 1/√x )
= ( 1 ) + ( 2 )
= √2 + 1 + √2 - 1
= 2√2
b ) value of ( √x - 1/√x )
= ( √2 + 1 ) - ( √2 - 1 )
= √2 + 1 - √2 + 1
= 2
I hope this helps you.
:)
Answered by
1
Heya User,
=_=
--> x = 3 + 2√2
= (√2)² + 2(√2) + 1
= [ √2 + 1 ]²
--> √x = ( √2 + 1 )
Also, -->
----> ( 1 / √x )
= 1 / ( √2 + 1 )
= ( √2 - 1 ) / ( 2 - 1 ) = ( √2 - 1 )
Hence, √x + ( 1/√x ) = [ √2 + 1 + √2 - 1 ] = 2√2
And, √x - ( 1/√x ) = [ √2 + 1 - √2 + 1 ] = 2
^_^ There there.... We're done
=_=
--> x = 3 + 2√2
= (√2)² + 2(√2) + 1
= [ √2 + 1 ]²
--> √x = ( √2 + 1 )
Also, -->
----> ( 1 / √x )
= 1 / ( √2 + 1 )
= ( √2 - 1 ) / ( 2 - 1 ) = ( √2 - 1 )
Hence, √x + ( 1/√x ) = [ √2 + 1 + √2 - 1 ] = 2√2
And, √x - ( 1/√x ) = [ √2 + 1 - √2 + 1 ] = 2
^_^ There there.... We're done
Similar questions