If
leaves reminder 3 when divided by x-3 and leaves zero when divided by x-2 . Find the values of p and q.
Answers
SOLUTION:-
Given:
Polynomial: f(x)=x³ + px² + qx + 6
When f(x) is divided by x-3 & x-2, the remainders are 3 & 0 respectively;
Therefore,
CASE 1:
x-3 =0
=) x= 3
f(3)= 3
=) (3)³ + p(3)² + q(3) + 6=3
=) 27 + 9p + 3q +6 =3
=) 9p + 3q + 33= 3
=) 9p + 3q = 3-33
=) 9p + 3q = -30
=) 3p + q = -10.............(1)
CASE 2:
f(2)=0
=) (2)³ + p(2)² + q(2) +6 =0
=) 8 + p(4) + 2q + 6=0
=) 8 + 4p + 2q + 6 =0
=) 4p + 2q +14 =0
=) 4p + 2q = -14
=) 2p + q = -7.................(2)
On subtracting, equation (1) & (2), we get;
=) 3p + q - (2p + q) = -10-(-7)
=) 3p + q - 2p -q = -10 +7
=) 3p - 2p = -3
=) p= -3
So,
Putting the value of p in equation (2), we get;
=) 2(-3) + q = -7
=) -6 + q = -7
=) q= -7 +6
=) q = -1
Hence,
The value of p is -3 &
The value of q is -1.
Hope it helps ☺️
Answer :-
Value of p is - 3 and the value of q is - 1.
Explanation :-
Let f(x) = x³ + px² + qx + 6
When f(x) is divided by (x - 3) gives remainder 3
Finding zero of (x - 3)
x - 3 = 0
x = 3
By remainder theorem, f(3) is the remainder
⇒ f(3) = 3
⇒ (3)³ + p(3)² + q(3) + 6 = 3
⇒ 27 + p(9) + 3q + 6 = 3
⇒ 27 + 9p + 3q = 3 - 6
⇒ 9p + 3q = - 3 - 27
⇒ 9p + 3q = - 30
⇒ 3(3p + q) = - 30
⇒ 3p + q = - 30/3
⇒ 3p + q = - 10
⇒ q = - 10 - 3p
When f(x) is divided by (x - 2) gives remainder 0
Finding the zero of (x - 2)
x - 2 = 0
x = 2
By Remainder theorem, f(2) is the remainder
⇒ f(2) = 0
⇒ (2)³ + p(2)² + q(2) + 6 = 0
⇒ 8 + p(4) + 2q = - 6
⇒ 8 + 4p + 2q = - 6
⇒ 4p + 2q = - 6 - 8
⇒ 4p + 2q = - 14
⇒ 2(2p + q) - 14
⇒ 2p + q = - 14/2
⇒ 2p + q = - 7
Substitutute q = - 10 - 3p in the above equation
⇒ 2p + (- 10 - 3p) = - 7
⇒ 2p - 10 - 3p = - 7
⇒ - p - 10 = - 7
⇒ - 10 + 7 = p
⇒ - 3 = p
⇒ p = - 3
Substitute p = - 3 in q = - 10 - 3p
⇒ q = - 10 - 3(-3)
⇒ q = - 10 + 9
⇒ q = - 1
∴ the value of p is - 3 and the value of q is - 1.