Math, asked by Tricules, 9 months ago

If
x = 3 -  \sqrt[2]{2}
,find
 {x}^{2}  + 1 \div  {x}^{2}

Answers

Answered by mythu67
1

Answer:

\frac{193 - 132\sqrt{2} }{11-6\sqrt{2} }

Step-by-step explanation:

x = 3 - \sqrt{2}

To find, x^{2} + \frac{1}{x^{2} }

x^{2} = (3-\sqrt{2})^{2}\\x^{2} = 9 + 2 - 6\sqrt{2} \\x^{2} = 11 - 6\sqrt{2}\\

Now,

\frac{1}{x^{2} } = \frac{1}{11 - 6\sqrt{2} }

So, x^{2} + \frac{1}{x^{2} } = 11-6\sqrt{2} + \frac{1}{11-6\sqrt{2} }

= \frac{(11-6\sqrt{2})^{2}+1  }{11-6\sqrt{2} }

= \frac{121 + 72 - 132\sqrt{2}  }{11- 6\sqrt{2} }

= \frac{193 - 132\sqrt{2} }{11-6\sqrt{2} }

Hope this helped!

Please mark as brainliest answer!

Similar questions