Math, asked by vimakris25, 4 months ago

if
x = 3 +  \sqrt{8}
then the value of
 ( {x}^{2}  + 1 \div  {x}^{2} )
is

Answers

Answered by Anonymous
65

Given

\sf\to x = 3+\sqrt{8}

To find

\sf\to x^2+\dfrac{1}{x^2}

Now we can write as

\sf\to\dfrac{1}{x}=\dfrac{1}{3+\sqrt{8}}

Now rationalise

\sf\to\dfrac{1}{x}=\dfrac{1}{3+\sqrt{8}}\times\dfrac{3-\sqrt{8}}{3-\sqrt{8}}=\dfrac{3-\sqrt{8}}{9-8} =3-\sqrt{8}

we get

\sf\to\dfrac{1}{x} =3-\sqrt{8}

Using this identities

\to\sf (a+b)^2= a^2+b^2+2ab

Now we can write as

\sf\to\bigg(x+\dfrac{1}{x}\bigg)^2=x^2+\dfrac{1}{x^2}+2\times x\times\dfrac{1}{x}

Now put the value of x and 1/x

\sf\to (3+\sqrt{8}+3-\sqrt{8})^2=x^2+\dfrac{1}{x^2} +2

\sf\to (3+3)^2=x^2+\dfrac{1}{x^2} +2

\sf\to (6)^2=x^2+\dfrac{1}{x^2} +2

\sf\to 36=x^2+\dfrac{1}{x^2} +2

\sf\to x^2+\dfrac{1}{x^2} =36-2

\sf\to x^2+\dfrac{1}{x^2} =34

Answer

\sf\to x^2+\dfrac{1}{x^2} =34

Answered by BrainlyKilIer
87

{\bf{Given\::}} \\

  • \bf{x = 3\: +\: \sqrt{8}} \\

 \\ {\bf{To\: Find\::}} \\

  •  \rm{\left( {x}^{2} \:+ \:\dfrac{1}{ {x}^{2}} \right)} \\

 \\ {\bf{Solution\::}} \\

First we calculate the value of ''.

\tt{\:x^2\:=\:\left(3\: +\: \sqrt{8}\right)^2}

\tt{\:x^2\:=\:9\: +\:8\:+\:6\sqrt{8}\:}

\bf{\:x^2\:=\:17\:+\:6\sqrt{8}\:}

Now,

We calculate the value of  \rm{\left(\dfrac{1}{ {x}^{2}} \right)}. \\

 \tt{\:\dfrac{1}{ {(3\:+\:\sqrt{8})}^{2}} } \\

 \tt{\:\dfrac{1}{9\:+\:8\:+\:6\sqrt{8}} } \\

 \tt{\:\dfrac{1}{17\:+\:6\sqrt{8}} } \\

Rationalize the above equation.

 \tt{\:\dfrac{1}{17\:+\:6\sqrt{8}}\times \dfrac{17\:-\:6\sqrt{8}}{17\:-\:6\sqrt{8}} } \\

 \tt{\:\dfrac{17\:-\:6\sqrt{8}}{(17\:+\:6\sqrt{8})\:(17\:-\:6\sqrt{8})} } \\

 \tt{\:\dfrac{17\:-\:6\sqrt{8}}{(17)^2\:-\:(6\sqrt{8})^2} } \\

 \tt{\:\dfrac{17\:-\:6\sqrt{8}}{289\:-\:288} } \\

 \tt{\:\dfrac{17\:-\:6\sqrt{8}}{1} } \\

 \bf{\:(17\:-\:6\sqrt{8})}

Now,

Adding these two results that we calculate.

:\implies\:\rm{x^2\:+\:\dfrac{1}{ {x}^{2}} } \\

:\implies\:\rm{(17\:+\:6\sqrt{8})\:+\:(17\:-\:6\sqrt{8})\:} \\

:\implies\:\rm{17\:+\:\cancel{6\sqrt{8}}\:+\:17\:-\:\cancel{6\sqrt{8}}\:} \\

:\implies\:\rm{17\:+\:17\:} \\

:\implies\:\bf{34\:} \\

⠀⠀⠀ {\boxed{\bf{\pink{\therefore\:\left( {x}^{2} \:+ \:\dfrac{1}{ {x}^{2}} \right)\:=\:34\:}}}} \\

__________________________

⠀⠀⠀⠀: SOME PROPERTIES :

⠀⠀❶ \bf{(a\:+\:b)^2\:=\:a^2\:+\:b^2\:+\:2ab}

⠀⠀❷ \bf{(a\:+\:b)\:(a\:-\:b)\:=\:a^2\:-\:b^2\:}

Similar questions