Sociology, asked by lleaderboardkingl13, 3 months ago

if x = 3 + \sqrt{8} then the value of ( {x}^{2} + 1 \div {x}^{2} )is​

Answers

Answered by Anonymous
1

Answer:

Given

\sf\to x = 3+\sqrt{8}

To find

\sf\to x^2+\dfrac{1}{x^2}

Now we can write as

\sf\to\dfrac{1}{x}=\dfrac{1}{3+\sqrt{8}}

Now rationalise

\sf\to\dfrac{1}{x}=\dfrac{1}{3+\sqrt{8}}\times\dfrac{3-\sqrt{8}}{3-\sqrt{8}}=\dfrac{3-\sqrt{8}}{9-8} =3-\sqrt{8}

we get

\sf\to\dfrac{1}{x} =3-\sqrt{8}

Using this identities

\to\sf (a+b)^2= a^2+b^2+2ab

Now we can write as

\sf\to\bigg(x+\dfrac{1}{x}\bigg)^2=x^2+\dfrac{1}{x^2}+2\times x\times\dfrac{1}{x}

Now put the value of x and 1/x

\sf\to (3+\sqrt{8}+3-\sqrt{8})^2=x^2+\dfrac{1}{x^2} +2</p><p>

\sf\to (3+3)^2=x^2+\dfrac{1}{x^2}

\sf\to (6)^2=x^2+\dfrac{1}{x^2} +2

\sf\to 36=x^2+\dfrac{1}{x^2} +2

\sf\to x^2+\dfrac{1}{x^2} =36-2

\sf\to x^2+\dfrac{1}{x^2}

Answer

\sf\to x^2+\dfrac{1}{x^2}

Answered by THEmultipleTHANKER
3

\begin{gathered}{\bf{Given\::}} \\ \end{gathered}

\begin{gathered}\bf{x = 3\: +\: \sqrt{8}} \\ \end{gathered}

\begin{gathered} \\ {\bf{To\: Find\::}} \\ \end{gathered}

\begin{gathered} \rm{\left( {x}^{2} \:+ \:\dfrac{1}{ {x}^{2}} \right)} \\ \end{gathered}

\begin{gathered} \\ {\bf{Solution\::}} \\ \end{gathered}

First we calculate the value of 'x²'.

➠ \tt{\:x^2\:=\:\left(3\: +\: \sqrt{8}\right)^2}

➠ \tt{\:x^2\:=\:9\: +\:8\:+\:6\sqrt{8}\:}

➠ \bf{\:x^2\:=\:17\:+\:6\sqrt{8}\:}

Now,

We calculate the value of \begin{gathered} \rm{\left(\dfrac{1}{ {x}^{2}} \right)}. \\ \end{gathered}

➠ \begin{gathered} \tt{\:\dfrac{1}{ {(3\:+\:\sqrt{8})}^{2}} } \\ \end{gathered}

➠ \begin{gathered} \tt{\:\dfrac{1}{9\:+\:8\:+\:6\sqrt{8}} } \\ \end{gathered}

➠ \begin{gathered} \tt{\:\dfrac{1}{17\:+\:6\sqrt{8}} } \\ \end{gathered}

Rationalize the above equation.

➠ \begin{gathered} \tt{\:\dfrac{1}{17\:+\:6\sqrt{8}}\times \dfrac{17\:-\:6\sqrt{8}}{17\:-\:6\sqrt{8}} } \\ \end{gathered}

➠ \begin{gathered} \tt{\:\dfrac{17\:-\:6\sqrt{8}}{(17\:+\:6\sqrt{8})\:(17\:-\:6\sqrt{8})} } \\ \end{gathered}

➠ \begin{gathered} \tt{\:\dfrac{17\:-\:6\sqrt{8}}{(17)^2\:-\:(6\sqrt{8})^2} } \\ \end{gathered}

➠ \begin{gathered} \tt{\:\dfrac{17\:-\:6\sqrt{8}}{289\:-\:288} } \\ \end{gathered}

➠ \begin{gathered} \tt{\:\dfrac{17\:-\:6\sqrt{8}}{1} } \\ \end{gathered}

➠ \bf{\:(17\:-\:6\sqrt{8})}

Now,

Adding these two results that we calculate.

\begin{gathered}:\implies\:\rm{x^2\:+\:\dfrac{1}{ {x}^{2}} } \\ \end{gathered}

\begin{gathered}:\implies\:\rm{(17\:+\:6\sqrt{8})\:+\:(17\:-\:6\sqrt{8})\:} \\ \end{gathered}

\begin{gathered}:\implies\:\rm{17\:+\:\cancel{6\sqrt{8}}\:+\:17\:-\:\cancel{6\sqrt{8}}\:} \\ \end{gathered}

\begin{gathered}:\implies\:\rm{17\:+\:17\:} \\ \end{gathered}

\begin{gathered}:\implies\:\bf{34\:} \\ \end{gathered}

\begin{gathered}{\boxed{\bf{\pink{\therefore\:\left( {x}^{2} \:+ \:\dfrac{1}{ {x}^{2}} \right)\:=\:34\:}}}} \\ \end{gathered}

__________________________

⠀⠀⠀⠀: SOME PROPERTIES :

⠀⠀❶ \bf{(a\:+\:b)^2\:=\:a^2\:+\:b^2\:+\:2ab}

⠀⠀❷ \bf{(a\:+\:b)\:(a\:-\:b)\:=\:a^2\:-\:b^2\:}

Similar questions