Math, asked by Anonymous, 1 month ago

If  x=a^{\frac{1}{3}}+a^{\frac{-1}{3}}, then find the value of  x^3-3x=a+\dfrac{1}{a}.

Mods and stars help me please .·´¯`(>▂<)´¯`·.​

Answers

Answered by Anonymous
10

Answer :-

Given :-

  • \sf x = a^{\frac{1}{3}} + a^{\frac{-1}{3}}

To Prove :-

  • \sf x^3 - 3x = a + \dfrac{1}{a}

Solution :-

\implies\sf x^3 - 3x

\implies\sf (a^{\frac{1}{3}} + a^{\frac{-1}{3}})^3 - 3(a^{\frac{1}{3}} + a^{\frac{-1}{3}})

  • \sf (a + b)^3 = a^3 + b^3 + 3ab ( a + b)

\implies\sf (a^\frac{1}{3})^3 + (a^\frac{-1}{3})^3 + 3 \times a^\frac{1}{3} \times a^\frac{-1}{3} (a^{\frac{1}{3}} + a^{\frac{-1}{3}}) - 3(a^{\frac{1}{3}} + a^{\frac{-1}{3}})

\implies\sf a^{\frac{1}{\not3} \times \not3} + a^{\frac{-1}{\not3}\times \not3}+ 3 \times a^{\frac{1}{3}} + a^\frac{(-1)}{3}(a^\frac{1}{3} + a^\frac{-1}{3}) - 3(a^{\frac{1}{3}} + a^{\frac{-1}{3}})

\implies\sf a + a^{-1} + 3 \times a^0 \times (a^{\frac{1}{3}} + a^{\frac{-1}{3}})  - 3(a^{\frac{1}{3}} + a^{\frac{-1}{3}})

\implies\sf a + a^{-1} + \cancel{3(a^{\frac{1}{3}} + a^{\frac{-1}{3}})} - \cancel{3(a^{\frac{1}{3}} + a^{\frac{-1}{3}})}

\implies\sf a + a^{-1}

\implies\sf a + \dfrac{1}{a}

\boxed{\sf x^3 - 3x = a + \dfrac{1}{a}}

Hence proved.

Similar questions