Math, asked by AnugrahaTJohn, 7 months ago

if
 {x}^{a}  =  {y}^{b}  =  {z}^{c} and  \: xyz = 1 \: find \: the \: value \: of \:  \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c}

Answers

Answered by pratyusa7150
0

Answer:

\frac{1}{a} +   \frac{1}{b}  +  \frac{1}{c}  = 1

Step-by-step explanation:

let \:  {x}^{a} =  {y}^{b}  =  {z}^{c}  = k \\  x =  {k}^{ \frac{1}{a} }   \:  \:  \: \: y =  {k}^{ \frac{1}{b} }  \:  \:  \:  \: z =  {k}^{ \frac{1}{c} }   \\ xyz = 1 -  -  -  -  -  - (given) \\  {k}^{\frac{1}{a} +   \frac{1}{b}  +  \frac{1}{c}}  =  {k}^{1}   \\ \frac{1}{a} +   \frac{1}{b}  +  \frac{1}{c}  = 1

Similar questions