Math, asked by Nitya1221, 8 months ago

If
x \cos(theta)  = a
and
y = a \tan(theta)
, then prove that
 {x}^{2}  -  {y}^{2}  =   {a}^{2}

Answers

Answered by anindyaadhikari13
17

\star\:\:\:\bf\large\underline\blue{Given:-}

x \cos \theta = a

 \implies x =  \frac{a}{ \cos\theta }

 \implies x =  a \sec \theta

Now,

y = a  \tan \theta

\star\:\:\:\bf\large\underline\blue{To\:Prove:-}

  •  {x}^{2}  -  {y}^{2}  =  {a}^{2}

\star\:\:\:\bf\underline\blue{LHS:-}

 {x}^{2}  -  {y}^{2}

 =  {(a \sec \theta)}^{2}  -  {(a \tan \theta)}^{2}

 =  a^{2}  \sec^{2} \theta  -  a^{2} \tan^{2} \theta

 =  a^{2}  (\sec^{2} \theta  -\tan^{2} \theta)

Now, we know that,

  (\sec^{2} \theta  -\tan^{2} \theta) = 1

So,

 a^{2}  (\sec^{2} \theta  -\tan^{2} \theta)

 =  {a}^{2}  \times 1

 =  {a}^{2}

\star\:\:\:\bf\underline\blue{RHS:-}

 =  {a}^{2}

\star\:\:\:\bf\underline\blue{Therefore,\:LHS\:=\:RHS}

\star\:\:\:\bf\large\underline\blue{\textsf{Hence Proved.}}

Similar questions