Math, asked by aryan021212, 2 days ago

If

x =  {e}^{cos2t}

y =  {e}^{sin2t}

prove that

 \frac{dy}{dx}  =  -  \frac{y logx\: }{x \: logy}

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given that,

\rm \: x =  {e}^{cos2t}  \\

Taking log on both sides, we get

\rm \: logx = log {e}^{cos2t}  \\

\rm \: logx  = cos2t \: loge \\

\rm \: logx  = cos2t  -  -  - (1) \\

Also, given that

\rm \: y =  {e}^{sin2t}  \\

Taking log on both sides, we get

\rm \: logy =  log{e}^{sin2t}  \\

\rm \: logy = sin2t \: loge \\

\rm \: logy = sin2t  -  -  - (2) \\

On squaring equation (1) and (2) and add, we get

\rm \:  {(logx)}^{2} +  {(logy)}^{2} =   {cos}^{2}2t  + {sin}^{2} 2t \\

\rm \:  {(logx)}^{2} +  {(logy)}^{2} =   1 \\

On differentiating both sides w. r. t. x, we get

\rm \:  \dfrac{d}{dx}\bigg[{(logx)}^{2} +  {(logy)}^{2} \bigg]=   \dfrac{d}{dx}1 \\

\rm \: \dfrac{d}{dx} {(logx)}^{2} + \dfrac{d}{dx} {(logy)}^{2}  = 0 \\

\rm \: 2logx\dfrac{d}{dx}logx + 2logy\dfrac{d}{dx}logy = 0 \\

\rm \: 2logx \times  \frac{1}{x}  + 2logy \times  \frac{1}{y}\dfrac{dy}{dx} = 0 \\

\rm \: 2\bigg(logx \times  \frac{1}{x}  + logy \times  \frac{1}{y}\dfrac{dy}{dx}\bigg)= 0 \\

\rm \: \dfrac{logx}{x}  + \dfrac{logy}{y}\dfrac{dy}{dx}  = 0

\rm \: \dfrac{logy}{y}\dfrac{dy}{dx}  =  - \dfrac{logx}{x}  \\

\rm\implies \:\boxed{ \rm{ \:\dfrac{dy}{dx}  \: =  \:  -  \:  \frac{y \: logx}{x \: logy}  \:  \: }} \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:\dfrac{d}{dx} {x}^{n}  \:  =  \:  {nx}^{n - 1} \:  \: }} \\

\boxed{ \rm{ \:\dfrac{d}{dx}logx \:  =  \:  \frac{1}{x}  \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {x}^{n}\\ \\ \sf  {nx}^{n - 1}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Similar questions