Math, asked by palsabita1957, 5 months ago

If
x =  \frac{1}{2}
is a root of the equation
 {x}^{2}  + kx -  \frac{5}{4}  = 0

then find the value of k. ​


nehadhewa2004: k=2

Answers

Answered by suraj5070
226

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt If \:x = \dfrac{1}{2}\: is \:a \:root \:of \:the\:\\\tt equation\: {x}^{2} + kx - \frac{5}{4} =0.\:\\\tt Then\: find\: the\: value\: of\: k.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf\implies {x}^{2} + kx - \frac{5}{4} = 0

 \sf \bf\implies x=\dfrac{1}{2}

 {\overbrace {\underbrace {\color {orange} {\sf \bf Substitute \:the \:value\:of \:x}}}}

 \sf \bf\implies {\bigg(\dfrac{1}{2}\bigg)}^{2} + k\bigg(\dfrac{1}{2}\bigg) - \frac{5}{4} = 0

 \sf \bf\implies \dfrac{1}{4}+\dfrac{1k}{2}-\dfrac{5}{4}=0

 {\color {orange} \underline {\tt By\:taking \:LCM}}

 \sf \bf\implies \dfrac{1+2k-5}{4}=0

 \sf \bf\implies 1+2k-5=0 \times 4

 \sf \bf\implies 1+2k-5=0

 \sf \bf\implies 2k-4=0

 \sf \bf\implies 2k=4

 \sf \bf\implies k= \dfrac{4}{2}

\implies{\boxed {\boxed {\color {blue} {\sf \bf k=2}}}}

 {\color {purple} \underline {\tt \therefore The\:value \:of \:k\:is\:2}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU }}}

__________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 {\color {green} {\tt Identities}}

 \sf \bf {(a+b)}^{2}={a}^{2}+2ab+{b}^{2}

 \sf \bf {(a-b)}^{2}={a}^{2}-2ab+{b}^{2}

 \sf \bf (a+b) (a-b) ={a}^{2}-{b}^{2}


palsabita1957: Happy Republic Day
palsabita1957: great answer
suraj5070: Happy republic day
suraj5070: Tq :)
Answered by Anonymous
5

Answer:

x + kx - = 0 4

1

- 2

Substitute the value of x

2 +k 5 4 2 2

1 4 + 1k 2 5 4 = 0

By taking LCM

1 + 2k - 5 = 0

4

1 + 2k - 5 = 0 x 4

1 + 2k - 5 = 0

2k - 4 = 0

+ 2k = 4

4

2

Step-by-step explanation:

hope it will help you ..pls dont report ilina..bio pdlo☺

Attachments:
Similar questions