Math, asked by romanreigns35, 1 year ago

If
(x -  \frac{1}{x} ) = 12
find the value of (x2+x21​) and (x4+x41​)

Answers

Answered by fuioufich
1

x -  \frac{1}{x}  = 12 \\  \\ squaring \: both \: sides \\  \\ (x  - \frac{1}{x}) {}^{2}   = (12) {}^{2}  \\  \\ x {}^{2}  +  \frac{1}{x {}^{2} }  - 2 = 144 \\  \\ x {}^{2}  +  \frac{1}{x {}^{2} }  = 146 \:  \:  \: .......ans \\  \\ and \:  \\  \\ (x {}^{2}  +  \frac{1}{x {}^{2} } ) {}^{2}  = (146) {}^{2}  \\  \\ x {}^{4}  +  \frac{1}{x {}^{4} }  = 2116- 2 \\  \\ x {}^{4}  +  \frac{1}{x {}^{4} }  =2114

Thanks
Answered by BrainlyQueen01
17
\huge{\mathcal{Hi\: there!}}

_______________________

Given :

x -  \frac{1}{x}  = 12 \\  \\  \bold{on \: squaring \: both \: sides : } \\  \\ (x -  \frac{1}{x} ) {}^{2}  = (12) {}^{2}  \\  \\  x{}^{2}  +  \frac{1}{x {}^{2} }  - 2 = 144 \\  \\   x{}^{2}  +  \frac{1}{x {}^{2} }  = 144 + 2 \\  \\    \boxed{ \bold{x{}^{2}  +  \frac{1}{x {}^{2} }  = 146}}


Now,

 \bold{again  \: on \: squaring \: both \: sides : } \\  \\ (x {}^{2}  +  \frac{1}{x {}^{2} } ) {}^{2}  = (146) {}^{2}  \\  \\ x {}^{4}  +  \frac{1}{x {}^{4} }  + 2 = 21316 \\  \\  x {}^{4}  +  \frac{1}{x {}^{4} } = 21316 - 2 \\  \\   \boxed{ \bold{x {}^{4}  +  \frac{1}{x {}^{4} } = 21314}}

_______________________

Thanks for the question!

❤️☺️❤️

BrainlyQueen01: (a + b) ² = a² + b² + 2 ab
BrainlyQueen01: x² + 1 / x² + 2 × x × 1 / x.
BrainlyQueen01: here, x and 1 / x cancelled
BrainlyQueen01: therefore x² + 1/ x² + 2
Similar questions