Math, asked by tajrian05, 2 months ago

if
x +   \frac{1}{x}    = 2 \:
then prove that
  {x}^{8}  - 2 {x}^{4}  + 1 = 0

Answers

Answered by mathdude500
12

\large\underline{\sf{Given- }}

 \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \: \:  \:  x + \dfrac{1}{x}  = 2

\large\underline{\sf{To\:prove-}}

 \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \: \:  \:   {x}^{8} -  {2x}^{4} + 1 = 0

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \bf \:  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}

\large\underline{ \bold{{Solution-}}}

Given that,

\rm :\longmapsto\:x + \dfrac{1}{x} = 2

On squaring both sides, we get

\rm :\longmapsto\: {\bigg(x + \dfrac{1}{x}\bigg) }^{2} =  {2}^{2}

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} }  + 2 \times \cancel x \times \dfrac{1}{\cancel{x}}  = 4

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} }  + 2 =  4

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} }  =  4 - 2

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} }  = 2

On squaring both sides, we get

\rm :\longmapsto\: {\bigg( {x}^{2}  + \dfrac{1}{ {x}^{2} }\bigg) }^{2} =  {2}^{2}

\rm :\longmapsto\: {x}^{4} + \dfrac{1}{ {x}^{4} } + 2 \times \cancel {x}^{2} \times \dfrac{1}{\cancel {x}^{2} }   = 4

\rm :\longmapsto\: {x}^{4}  + \dfrac{1}{ {x}^{4} } + 2 = 4

\rm :\longmapsto\: {x}^{4}  + \dfrac{1}{ {x}^{4} } = 4 - 2

\rm :\longmapsto\: {x}^{4}  + \dfrac{1}{ {x}^{4} } = 2

\rm :\longmapsto\:\dfrac{ {x}^{8}  + 1}{ {x}^{4} } = 2

\rm :\longmapsto\: {x}^{8}  + 1 =  {2x}^{4}

\bf\implies \: {x}^{8}  - 2 {x}^{4}  + 1 = 0

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions