Math, asked by Scchan, 1 month ago

If x+\frac{1}{x} =3, then find the value of x^{3}+\frac{1}{x^3}

Answers

Answered by Anonymous
52

\large\underline{\sf{We \ have}}

\sf{x - \frac{1}{x} = 3}

\large\underline{\sf{To \ find}}

\sf{the \ value \ of {x}^{3} - \frac{1}{{x}^{3}}}

\large\underline{\sf{On \ cubing \ both \ side}}

\sf{{(x - \frac{1}{x})}^{3} = {(3)}^{3}}

\large\underline{\sf{Using \ identity}}

\fbox{\sf{(a - b)³ = a³ - b³ - 3ab (a - b)}}

\sf{x³ - \frac{1}{x³} - 3 (x - \frac{1}{x}) = 27}

\sf{x³ - \frac{1}{x³} - 3(3) = 27}

\sf{x³ - \frac{1}{x³} - 9 = 27}

\sf{x³ - \frac{1}{x³} = 27 + 9}

\sf{x³ - \frac{1}{x³} = 36}

The Value of

\sf\green{x³ - \frac{1}{x³} = 36}

#NAWABZAADI

Answered by XxNawabzaadaxX
15

\large\underline{\rm{We \ Have}}

\rm{x - \dfrac{1}{x} = 3}

  \\

\large\underline{\rm{To \ Find}}

\rm{x³ - \dfrac{1}{x³}}

  \\

\large\underline{\rm{On \ cubing \ both \ side}}

\rm{(x - \dfrac{1}{x})³ = (3)³}

  \\

\large\underline{\rm{Using \ identity}}

\fbox{\rm{(a - b)³ = a³ - b³ - 3ab (a - b)}}

\rm{x³ - \dfrac{1}{x³} - 3 (x - \dfrac{1}{x}) = 27}

\rm{x³ - \dfrac{1}{x³} - 3(3) = 27}

\rm{x³ - \dfrac{1}{x³} - 9 = 27}

\rm{x³ - \dfrac{1}{x³} = 27 + 9}

\rm{x³ - \dfrac{1}{x³} = 36}

The Value of

\red{\boxed{\rm{x³ - \frac{1}{x³} = 36}}}

  \\

#NAWABZAADA

Similar questions