Math, asked by dd2434, 1 year ago

if
x + \frac{1}{x} = 3
then,
 {x}^{3} + \frac{1}{ {x}^{3} } =
?

​pls ans

Answers

Answered by nain31
21
 \huge \boxed{\mathcal{\boxed{ANSWER}}}

 \mathtt{Given,}

 \boxed{x + \frac{1}{x} =3}

 \mathtt{On \: cubing \: both \: sides}

 {(x + \frac{1}{x})}^{3} ={3}^{3}

 \mathtt{On,\: applying \: identity}

 \boxed{{(a+b)}^{3}= {a}^{3} + {b}^{3} + 3 \times a\times \times b(a + b)}

 \mathtt{{x}^{3} + \frac{1}{{x}^{3}} + 3 x \times \frac{1}{x}\times(x+\frac{1}{x})}=27}

 \mathtt{{x}^{3} + \frac{1}{{x}^{3}} + 3 \cancel{x}\times \frac{1}{\cancel{x}}\times(x+\frac{1}{x})}= 27

 \mathtt{Since,}

 \HUGE \boxed{\bold{x + \frac{1}{x} =3}}

 {x}^{3} + \frac{1}{{x}^{3}} + 3(3)=27

 {x}^{3} + \frac{1}{{x}^{3}} + 9=27

 {x}^{3} + \frac{1}{{x}^{3}} + =27-9

 \boxed{{x}^{3} + \frac{1}{{x}^{3}} + =18}

 \mathtt{So,\:if \: x + \frac{1}{x} =3 \: then \:{x}^{3} + \frac{1}{{x}^{3}} + =18}

tausif59: Gajjab !! ✌
ParamPatel: ^_^
Anonymous: Nice work..❗
dd2434: thanks
Answered by ShiningSilveR
9

\huge{Hello}

\bf{Answer⏏️⏫☝️}

Attachments:

tausif59: Perfect !!
nain31: good
dd2434: thanks
Similar questions