Math, asked by parneetpari167, 9 months ago

If
x + \frac{1}{x} = 4
find the value of:
(i)
(x - \frac{1}{x}
(ii)
( {x}^{2} + \frac{1}{ {x}^{2} }
(iii)
( {x}^{4} + \frac{1}{ {x}^{4} } )
Can anybody explain me this answer Step-by-step? It is from the Chapter Algebraic Identities. It's urgent. The best answer will be marked as the Brainliest.

Answers

Answered by Delta13
2

Given:

x +  \frac{1}{x}  = 4 \\

To find:

The values of:

i) \: x -  \frac{1}{x}  \\  \\ ii) {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  \\ iii) {x}^{4}  +  \frac{1}{ {x}^{4} }

Solution:

i)

We have

x +  \frac{1}{x}  = 4 \\

So, we will be using identities.

For first part we will usethe following two identities.

(a+b)² = a² +b² +2ab and

(a-b)² = a² + b² -2ab

squaring \: both \: sides \\   =  > \left(x +  \frac{1}{x} \right ) {}^{2}  = (4) {}^{2}  \\  \\  =  >  {x}^{2}  +  \left( \frac{1}{x}  \right) {}^{2}  + 2 \times  \cancel{x} \times  \frac{1}{ \cancel{x} } = 16 \\  \\ =  >   {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 16 \\  \\  =  >  {x}^{2}  +  \frac{1}{x {}^{2} }  = 16 - 2 \\  \\  =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 14  \:  -  -  (1) \\  \\ now \\  \\  \left( x -  \frac{1}{x} \right) {}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 \times  \cancel{x} \times  \frac{1}{ \cancel{x}}  \\  \\ from \: (1) \\  \\   =  > \left(x -  \frac{1}{x}  \right) {}^{2}  = 14 - 2 \\  \\  =  >  \left (x -  \frac{1}{x} \right) {}^{2}  = 12  \\  \\  =  >  x -  \frac{1}{x}   =  \sqrt{12}  \\  \\ =  >  x -  \frac{1}{x}  =  \sqrt{4 \times 3}  \\  \\ we \: know \: that \:  \sqrt{4}  = 2 \\  \\  =  > x -  \frac{1}{x}  = 2 \sqrt{3}

Hence, 2√3 is the value.

__________________________

ii)

The above part has the answer of this part. The equation (1) is the answer.

We will use [ (a+b)² = a²+b²+2ab ]

squaring \: both \: sides \\   =  > \left(x +  \frac{1}{x} \right ) {}^{2}  = (4) {}^{2}  \\  \\  =  >  {x}^{2}  +  \left( \frac{1}{x}  \right) {}^{2}  + 2 \times  \cancel{x} \times  \frac{1}{ \cancel{x} } = 16 \\  \\ =  >   {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 16 \\  \\  =  >  {x}^{2}  +  \frac{1}{x {}^{2} }  = 16 - 2 \\  \\  =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 14

Hence, 14 is the value.

______________________________

iii)

Again we will use,

(a+b)²= a² +b² +2ab

Here a= x² and b= 1/x²

squaring \: both \: sides \\  =  >  \left(  {x}^{2}  +  \frac{1}{ {x}^{2} } \right) {}^{2}  = (14) {}^{2}  \\  \\  \small =  > ( {x}^{2}) {}^{2}  +  \left( \frac{1}{x {}^{2} }  \right)  {}^{2}  + 2 \times  \cancel{ {x}^{2} } \times  \frac{1}{ \cancel{ {x}^{2} }}  = 196 \\  \\  =  >  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 = 196 \\  \\  =  >  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 196 - 2 \\  \\  =  >  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 194

Hence, 194 is the value.

Hope it helps you.

Answered by Anonymous
6

so since im bored imma spem your questions. first let's discuss about Phineas. how is his face a triangle? stan james charles chips.

Attachments:
Similar questions