If
then find the value of
Don't write anything useless else I'll have to report your answer
Answers
Step-by-step explanation:
Given :-
x+(1/x) = 5
To find :-
Find the value of x⁹+(1/x⁹) ?
Solution :-
Given that :
x+(1/x) = 5 ------------(1)
On cubing both sides
[x+(1/x)]³ = 5³
=> [x+(1/x)]³ = 125
We know that
(a+b)³ = a³+b³+3ab(a+b)
Where a = x and b = 1/x
Now,
=>x³+(1/x)³+3(x)(1/x)[x+(1/x)] = 125
=> x³+(1/x³) +3(x/x)[x+(1/x)] = 125
=> x³+(1/x³) +3(1)[x+(1/x)] = 125
=>x³+(1/x³) +3[x+(1/x)] = 125
=> x³+(1/x³)+3(5) = 125 (from (1))
=> x³+(1/x³)+ 15= 125
=> x³+(1/x³) = 125-15
=> x³+(1/x³) = 110 ----------(2)
On cubing both sides then
=> [x³+(1/x³)]³ = (110)³
We know that
(a+b)³ = a³+b³+3ab(a+b)
Where a = x³ and b = 1/x³
Now,
=>(x³)³+(1/x³)³+3(x³)(1/x³)[x³+(1/x³)] = 1331000
=> x⁹+(1/x⁹)+3(x³/x³)[x³+(1/x³)] = 1331000
=> x⁹+(1/x⁹)+3(1)[x³+(1/x³)] = 1331000
=> x⁹+(1/x⁹)+3[x³+(1/x³)] = 1331000
=> x⁹+(1/x⁹)+3(110) = 1331000
=> x⁹+(1/x⁹) +330 = 1331000
=> x⁹+(1/x⁹) = 1331000-330
=> x⁹+(1/x⁹) = 1330670
Answer :-
The value of x⁹+(1/x⁹) for the given problem is 1330670
Used formulae:-
- (a+b)³ = a³+b³+3ab(a+b)
- (a^m)^n = a^(mn)