Math, asked by abcd8690, 1 year ago

If
x +  \frac{1}{x}  = 7
then find the value of
 {x}^{3}  +  \frac{ 1 }{ {x}^{3} }

Answers

Answered by Anonymous
112

\bf{\large{\underline{\underline{Answer:-}}}}

\sf{x^3 + \dfrac{1}{x^3}= 322}

\bf{\large{\underline{\underline{Explanation:-}}}}

Given :- \sf{x + \dfrac{1}{x} = 7}

To find :- \sf{x^3 + \dfrac{1}{x^3}}

Solution :-

x +  \dfrac{1}{x} = 7

Now on cubing on both the sides

 {(x +  \dfrac{1}{x}) }^{3} =  {7}^{3}

We know that, (x + y)³ = x³ + y³ + 3xy(x + y)

Here x = x , y = 1/x

By substituting the values in the identity we have

 {x}^{3} +  \dfrac{1}{ {x}^{3}} + 3(x)( \dfrac{1}{x})(x +  \dfrac{1}{x}) = 343

 {x}^{3} +  \dfrac{1}{ {x}^{3} } + 3(x +  \dfrac{1}{x}) = 343

 {x}^{3} +  \dfrac{1}{ {x}^{3} } + 3(7) = 343

[Since \bf{x + \dfrac{1}{x} = 7} ]

 {x}^{3} +  \dfrac{1}{ {x}^{3} } + 21 = 343

 {x}^{3} +  \dfrac{1}{ {x}^{3} } = 343 - 21

 {x}^{3} +  \dfrac{1}{ {x}^{3} } = 322

\Huge{\boxed{\sf{x^3 + \dfrac{1}{x^3} = 322}}}

\bf{\large{\underline{\underline{Identity \: Used:-}}}}

(x + y)³ = x³ + y³ + 3xy(x + y)

\bf{\large{\underline{\underline{Some \: important \: Identities:-}}}}

• (x + y)² = x² + y² + 2xy

• (x - y)² = x² + y² - 2xy

• (x + y)(x - y) = x² - y²

• (x + a)(x + b) = x² + (a + b)x + ab


shikhaku2014: wello. :-)
Saksham1212: helo
Saksham1212: very good answer
Saksham1212: i think genius question
Saksham1212: i think it is genius questions
Saksham1212: very well
Saksham1212: hahahah
Saksham1212: he
Saksham1212: hehhe
khushijindal60: hi gm
Answered by TheCommando
101

Given:

x + \frac{1}{x} = 7

To find:  {x}^{3} + \frac{ 1 }{ {x}^{3} }

We know,

 \boxed{{(a + b)}^{3} = a^{3} + b^{3} + 3ab(a + b)}

Here,

 {(x + \dfrac{1}{x})}^{3} = x^{3} + \dfrac{1}{x^{3}} + 3(x)(\dfrac{1}{x})(x + \dfrac{1}{x})

 \implies {(7)}^{3} = x^{3} + \dfrac{1}{x^{3}} + 3(7)

 \implies 343 = x^{3} + \dfrac{1}{x^{3}} + 21

 \implies x^{3} + \dfrac{1}{x^{3}} = 343 - 21 = 322

 \mathfrak{\large{\underline{\underline{Answer}}}}

 \boxed{x^{3} + \dfrac{1}{x^{3}} = 322}


Anonymous: Fantastic answer Laks Di! :)
TheCommando: Thank you ❣
Anonymous: nice sista^_^
nammhes: great answer :)
TheCommando: Thank you ☺
nammhes: wello :)
Anonymous: wello
shikhaku2014: great answer.....
TheCommando: Thank you
shikhaku2014: Wello
Similar questions