Math, asked by swarajpatil2, 1 year ago

if
x + \frac{1}{x} = 7
then
 {x}^{2} +  \frac{1}{ {x}^{2} } =


mayankjee63: 47

Answers

Answered by QUEEN007
1
Hey Friend ☺

x + 1/x = 7.

( x + 1/x )^2 = ( x )^2 + ( 1/x )^2 + 2 ( x )( 1/x )

》( x + 1/x )^2 = x^2 + 1/x^2 + 2

Since ( a + b )^2 = a^2 + b^2 + 2ab

》( 7 ) ^2 = x^2 + 1/x^2 + 2

》49 = x^2 + 1/x^2 + 2

》x^2 + 1/x^2 = 49 - 2

》x^2 + 1/x^2 = 47

Hope it helps you ..!!

Answered by ShuchiRecites
1
Hello Mate!

if \: x +  \frac{1}{x}  = 7 \\ then \:  {(x +  \frac{1}{x}) }^{2}  =  {7}^{2}  \\  {x}^{2}  +  {( \frac{1}{x} )}^{2}  + 2 \times x \times  \frac{1}{x}  = 49 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 49 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 49 - 2 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 47

Hope it helps☺!✌
Similar questions