Math, asked by poonamjain6554, 1 year ago

If
x +  \frac{1}{x}  = 8
find the value of
 {x}^{2}  +  \frac{ {1} }{ {x}^{2} }

Answers

Answered by amankumaraman11
1

Given :-

 \large \bf x + \frac{1}{x} = 8

To find :-

 \large \bf {x}^{2}  +  \frac{1}{ {x}^{2} }

Calculation :-

 \huge \sf (x +  \frac{1}{x} )^{2}  =  {(8)}^{2}  \\  \\   {x}^{2}  + \frac{1}{ {x}^{2} }  + 2( \cancel x)( \frac{1}{ \cancel x} ) = 64 \\  \\   \sf {x}^{2}  +  \frac{1}{ {x}^{2} }   + 2 = 64 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 64 - 2  \\   \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  =  \red{62}

#BAL

Answered by Anonymous
10

\huge{\fbox{\fbox {\mathfrak{Solution :}}}}

Given:

  • x +  \frac{1}{x}  = 8

To Find :

  • The value of x^2  +  \frac{1}{x^2 }

\boxed {\pink { {(a + b)}^{2}  =  a^2 +  b^2 + 2ab }}

Squaring on both sides :

\implies  {(x +  \frac{1}{x}   )}^{2}  =   8^2 \\\implies  (x)^2 +  ( \frac{1}{x} )^2 + 2 \times x \times  \frac{1}{x} = 64 \\ \implies x^2 +  \frac{1}{x^2 }  + 2 = 64 \\ \implies x^2 +  \frac{1}{x^2 } = 64 - 2 \\\implies  x^2 +  \frac{1}{x^2 } = 62

\boxed {\green {\therefore{x^2 +  \frac{1}{x^2 } = 62}}}

Similar questions
Math, 6 months ago