Math, asked by Manahil78, 2 months ago

If
x +  \frac{1}{x} = 8
then find the value of
x^{3}  +  \frac{1}{ {x}^{3} }

Answers

Answered by Anonymous
112

Answer :-

  • The value of \sf x^{3} +\sf\cfrac{1}{{x}^{3}} = 488

To Find :-

  • The value of \sf x^{3} +\cfrac{1}{{x}^{3}}

Given :-

  • \sf x + \cfrac{1}{x} = 8

Step By Step Explanation :-

We know that \sf{x + \cfrac{1}{x} = 8}

We need to calculate the value of \sf x^{3} +\cfrac{1}{{x}^{3}}

So let's do it !!

 \bf \: Using \: Identity \downarrow \\  \\\dag\boxed{ \bf{ \red {{(x + y)}^{3}= {x}^{3} +  {y}^{3}  + 3xy(x + y)}}}

By substituting the values

 \sf \left(\cfrac{1}{x}+x\right)^{3}=  \cfrac{1}{ {x}^{3} }  +  {x}^{3}  + 3 \times  \cfrac{1}{ \not x}  \times  \not x \: \left( x +  \cfrac{1}{x}\right) \\  \\  \bf \: By \: substituting \: the \: values \downarrow  \\  \\\implies \sf {(8)}^{3}  =  \cfrac{1}{ {x}^{3} }  +  {x}^{3}  + 3(8) \\  \\\implies \sf 512 =  \cfrac{1}{ {x}^{3} }  +  {x}^{3}  + 24 \\  \\ \implies \sf512 - 24 =  \cfrac{1}{ {x}^{3} }  +  {x}^{3}  \\  \\ \implies\bf 488 =  \cfrac{1}{ {x}^{3} }  +  {x}^{3}

Hence the value of \sf x^{3} +\cfrac{1}{{x}^{3}} = 488

__________________________

Answered by kamalhajare543
7

Answer:

Given

x +   \frac{1}{x}  = 8

To find

 {x}^{3}  +  \frac{1}{ {x}^{3} }

solve

(x + y) {}^{3}  = x {}^{3}  + y {}^{3} + 3xy \: (x + y)

( \frac{1}{x} +  {x}^{3} )=  \frac{1}{x {}^{3} } +  {x}^{3} + 3 \times  \frac{1}{x}  \times x(x +  \frac{1}{x} )

By Substitution the value

 ({8}^{3}) =  \frac{1}{ {x}^{3} }  +  {x}^{3}  +  {x}^{3} + 3(8)

512 =  \frac{1}{x {}^{3} }+ {x}^{3} + 24

512 - 24 =  \frac{1}{ {x}^{3} }  +  {x}^{3}

  488 =  \frac{1}{ {x}^{3} }  +  {x}^{3}

Hence Answer is

488 =  \frac{1}{ {x}^{3} }  +  {x}^{3}

Similar questions