Math, asked by SuhaniAtreya, 6 months ago

if
x -  \frac{1}{x}  = 9
then find the value of ( i )
 {x}^{2}  +  \frac{1}{x {}^{2} }
( ii )
 {x}^{4}  +  \frac{1}{x {}^{4} }

Answers

Answered by rsagnik437
37

Given:-

 => (x -  \frac{1}{x})  = 9

To find:-

=> ({x}^{2}  +  \frac{1}{ {x}^{2} })

=> ({x}^{4}  +  \frac{1}{ {x}^{4} })

Solution:-

By squaring both the sides in the equation (x - 1/x)=9, we get:-

 =  > (x -  \frac{1}{x} ) ^{2}  = (9)^{2}

We know that:-

=>(a-b)² = + - 2ab

  =  > (x) ^{2}  +  ({ \frac{1}{x} )}^{2}  - 2  = 81

 =  >  {x}^{2} +  \frac{1}{ {x}^{2} } - 2 = 81

 =  >  {x}^{2}  +  \frac{1}{ {x}^{2}}  = 81 + 2

 =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 83

Hence, we have got the value of

(+1/) as 83.

_____________________________________

Now,by squaring both the sides in the equation (x² + 1/x²)=83, we get:-

 =  > (  {x}^{2}  +  \frac{1}{ {x}^{2} } ) ^{2}  = (83)^{2}

We know that:-

=>(a+b)² = + + 2ab

 =  >({ {x}^{2} })^{2} +  (\frac{1}{ {x}^{2}})^{2} + 2= 6889

 =  >  {x}^{4}  +  \frac{1}{ {x}^{4} } + 2 = 6889

 = > {x}^{4}  +  \frac{1}{ {x}^{4} }  = 6889 - 2

 =  >  {x}^{4} +  \frac{1}{ {x}^{4} } = 6887

Thus:-

Value of (+1/) is 83.

Value of (x+1/x⁴) is 6887.

Answered by prabhas24480
2

Given:-

 => (x -  \frac{1}{x})  = 9

To find:-

=> ({x}^{2}  +  \frac{1}{ {x}^{2} })

=> ({x}^{4}  +  \frac{1}{ {x}^{4} })

Solution:-

By squaring both the sides in the equation (x - 1/x)=9, we get:-

 =  > (x -  \frac{1}{x} ) ^{2}  = (9)^{2}

We know that:-

=>(a-b)² = a² + b² - 2ab

  =  > (x) ^{2}  +  ({ \frac{1}{x} )}^{2}  - 2  = 81

 =  >  {x}^{2} +  \frac{1}{ {x}^{2} } - 2 = 81

 =  >  {x}^{2}  +  \frac{1}{ {x}^{2}}  = 81 + 2

 =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 83

Hence, we have got the value of

(x²+1/x²) as 83.

_____________________________________

Now,by squaring both the sides in the equation (x² + 1/x²)=83, we get:-

 =  > (  {x}^{2}  +  \frac{1}{ {x}^{2} } ) ^{2}  = (83)^{2}

We know that:-

=>(a+b)² = a² + b² + 2ab

 =  >({ {x}^{2} })^{2} +  (\frac{1}{ {x}^{2}})^{2} + 2= 6889

 =  >  {x}^{4}  +  \frac{1}{ {x}^{4} } + 2 = 6889

 = > {x}^{4}  +  \frac{1}{ {x}^{4} }  = 6889 - 2

 =  >  {x}^{4} +  \frac{1}{ {x}^{4} } = 6887

Thus:-

•Value of (x²+1/x²) is 83.

•Value of (x⁴+1/x⁴) is 6887.

✔️✔️✔️

Similar questions