Math, asked by swarajpatil2, 1 year ago

if
x +  \frac{1}{x} =  \frac{50}{7}
then
x -  \frac{1}{x} =

Answers

Answered by Anonymous
1
x+1/x = 50/7
Squaring on both sides....
x^2 +2 + 1/x^2 = 2500/49
Subtracting 4 on both sides...
x^2 -2 + 1/x^2 = (2500-196)/49
(x-1/x)^2 = 2304/49
x-1/x = 48/7
Answered by sivaprasath
2
Solution :

_____________________________________________________________

Given :

x + \frac{1}{x} =  \frac{50}{7}

_____________________________________________________________

To Find :

The value of
x - \frac{1}{x}  ,.

_____________________________________________________________

The given data can also be written as,.

x + \frac{1}{x} =  \frac{50}{7}

 \frac{x^2 + 1}{x} =  \frac{50}{7}

By cross-multiplication, we get,.

⇒ (x² + 1) 7 = 50 (x)

⇒ 7x² +7 = 50x

⇒ 7x² - 50x + 7 = 0,.

⇒ 7x² - 49x - x + 7 = 0

⇒ 7x (x - 7) + 1(x - 7) = 0

⇒ (7x - 1)(x - 7) = 0,.

For the equation to be zero,.

7x - 1 = 0,. (or) x - 7 = 0

Then,

we can say that,

⇒ 7x =  1 (or) x = 7

⇒ x =   \frac{1}{7} (or) x = 7

_____________________________

Hence,.

x = 7 (or) x =   \frac{1}{7}

⇒ x -  \frac{1}{x}

if x = 7,.

Then,

 \frac{1}{x} =   \frac{1}{7} (or vice-versa),.

Hence,.

⇒ x -  \frac{1}{x}

⇒ 7 -( \frac{1}{7})

 \frac{49 - 1}{7}

 \frac{48}{7} =  6 \frac{6}{7}

⇒ ∴ x -  \frac{1}{x} = 6 \frac{6}{7}

_____________________________________________________________

                                               Hope it Helps !!

⇒ Mark as Brainliest,.

sivaprasath: Thanks,.
Similar questions