Math, asked by harinikr, 1 year ago

if
x + \frac{1}{x} =9
find the value of
 {x}^{3} + \frac{1}{x {}^{3} }
pls solve this one immediately


yogendra1024: what is the value of x+1/x
dhruvbadaya1: 9.

Answers

Answered by Divyaalia
9

 \: (x +  \frac{1}{x} ) {}^{3}  =  {x}^{3} +  {( \frac{1}{x} )}^{3}   + 3 \times x \times  \frac{1}{x} (x  + \frac{1}{x} ) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:     \:  \: {(9)}^{3}  =  {x}^{3}  +  \frac{1}{x {}^{3} }  + 3(9) \\  \\ \:  \:  \:  \:  \:  \:  \:  \:   \:  \: 729 =  {x}^{3}  +  \frac{1}{x {}^{3} } + 27 \\  \\ 729 - 27 =  {x}^{3}  +  \frac{1}{x {}^{3} }  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  702 =  {x}^{3}  +  \frac{1}{x {}^{3} }

harinikr: Thank you so much
Similar questions