Math, asked by Aghaz, 1 year ago

If
x =  \sqrt{5}   - 2 \div  \sqrt{5}  + 2
Then Find:
 {x}^{2}
Please solve with steps..

Answers

Answered by shpriyanshu
1
x=√5-2/√5+2 ×√5-2/√5-2
x=(5+4-4√5)/5-4
x=(9-4√5)/1
x^2=(9-4√5)^2
x^2=81+80-72√5
x^2=161-72√5
Answered by siddhartharao77
2
Given:x =  \frac{ \sqrt{5} - 2 }{ \sqrt{5} + 2 }

= \ \textgreater \   \frac{ \sqrt{5} - 2 }{ \sqrt{5} + 2 } *  \frac{ \sqrt{5} - 2 }{ \sqrt{5} - 2 }

= \ \textgreater \   \frac{( \sqrt{5} - 2)^2 }{( \sqrt{5})^2 - (2)^2 }

= \ \textgreater \   \frac{5 + 4 - 4 \sqrt{5} }{5 - 4}

= \ \textgreater \   \frac{9 - 4 \sqrt{5} }{1}

= \ \textgreater \  9 - 4 \sqrt{5}


Now,

x^2 = (9 - 4 \sqrt{5})^2  

= \ \textgreater \  (9)^2 + (4 \sqrt{5} )^2 - 2(9)(4 \sqrt{5})

= \ \textgreater \  81 + 80 - 72 \sqrt{5}

= \ \textgreater \  161 - 72 \sqrt{5}




Hope this helps!

siddhartharao77: :-)
Similar questions