If
, then find x²+1/x²-2
Answers
Answer:
Answer:
{x}^{2} + \dfrac{1}{ {x}^{2} } = \boxed{14}x
2
+
x
2
1
=
14
\red\bigstar★ Given:
x = 2 + √3
\green\bigstar★ To find:
The value of x² + 1/x²
\blue\bigstar★ Solution:
x = 2 + √3
So,
\frac{1}{x} = \frac{1}{2 + \sqrt{3} }
x
1
=
2+
3
1
Now, by rationalising the denominator, we get,
\frac{1}{x} = \frac{2 - \sqrt{3} }{(2 + \sqrt{3} )(2 - \sqrt{3}) }
x
1
=
(2+
3
)(2−
3
)
2−
3
\implies \frac{1}{x} = \frac{2 - \sqrt{3} }{ {(2)}^{2} - { (\sqrt{3} }^{2} )}⟹
x1 = (2) 2 −( 32 )2− 3
{ By using (a + b)(a - b) = a² - b² }
\implies \: \frac{1}{x} = \frac{2 - \sqrt{3} }{4 - 3}⟹
x1 = 4−32− 3
\implies \: \frac{1}{x} = \frac{2 - \sqrt{3} }{1}⟹
x1 = 12− 3
\implies \: \frac{1}{x} = 2 - \sqrt{3}⟹
x1 =2− 3
\therefore∴ 1/x = 2 - √3
Now, x² + 1/x² = ( x + 1/x )² - 2
So, x² + 1/x² = ( 2 + √3 + 2 - √3 )² - 2
( By substituting the values of x and 1/x )
\implies \: {x}^{2} + \frac{1}{ {x}^{2} } = {(4)}^{2} - 2⟹x
2 + x 21 =(4) 2 −2
( √3 and -√3 get cancelled)
\implies \: {x}^{2} + \frac{1}{ {x}^{2} } = 16 - 2⟹x
2 + x 21 =16−2
\implies \: {x}^{2} + \frac{1}{ {x}^{2} } = 14⟹x
2 + x 21 =14
\therefore \: \boxed{{x}^{2} + \frac{1}{ {x}^{2} } = 14}∴
x 2 + x 21 =14
★ Concepts used in the answer :
a² - b² = ( a + b )( a - b )
Substituting the values.
Rationalising the denominator.
\red\bigstar★ Some identities:
(a + b)(a - b) = a² - b²
(a + b)² = a² + 2ab + b²
(a - b)² = a² - 2ab + b²
(a + b)³ = a³ + b³ + 3ab² + 3a²b
a³ + b³ = ( a + b )(a² - ab + b²)
a³ - b³ = (a - b) ( a² + b² + ab)