Math, asked by khushi15686, 1 day ago

If

x =  \sqrt{ {a}^{ {cos}^{ - 1} t} }  \: and \: y =  \sqrt{ {a}^{ {sin}^{ - 1} t} } \: prove \: that \:  \frac{dy}{dx}  =  -  \frac{y}{x}

explain all steps ​

Answers

Answered by mathdude500
23

\large\underline{\sf{Solution-}}

Given parametric functions are

\rm \: x =  \sqrt{ {a}^{ {cos}^{ - 1}t } }  \:  -  -  - (1) \\

and

\rm \: y =  \sqrt{ {a}^{ {sin}^{ - 1}t } }  \:  -  -  - (2) \\

On multiply equation (1) and (2), we get

\rm \: xy =  \sqrt{ {a}^{ {cos}^{ - 1}t } } \times \sqrt{ {a}^{ {sin}^{ - 1}t } }  \\

We know,

\boxed{\sf{  \: {x}^{m} \times  {y}^{m}  \:  =  \:  {(xy)}^{m}  \: }} \\

So, using this identity, we get

\rm \: xy =  \sqrt{ {a}^{ {cos}^{ - 1}t } \times  {a}^{ {sin}^{ - 1} t}  }  \\

We know,

\boxed{\sf{  \: {x}^{m} \times  {x}^{n}  \:  =  \:  {x}^{m + n}  \: }} \\

So, using this identity, we get

\rm \: xy =  \sqrt{ {a}^{ {cos}^{ - 1}t  +  {sin}^{ - 1} t}}  \\

We know,

\boxed{\sf{  \: {cos}^{ - 1}x +  {sin}^{ - 1}x =  \frac{\pi}{2} \: }} \\

So, using this identity, we get

\rm \: xy \:  =  \:  \sqrt{ {\bigg(a\bigg) }^{\dfrac{\pi}{2}} }

On dividing both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}(xy) \:  =  \: \dfrac{d}{dx}\sqrt{ {\bigg(a\bigg) }^{\dfrac{\pi}{2}} }   \\

\rm \: x\dfrac{d}{dx}y + y\dfrac{d}{dx}x = 0 \\

\rm \: x\dfrac{dy}{dx} + y \times 1 = 0 \\

\rm \: x\dfrac{dy}{dx} + y = 0 \\

\rm \: x\dfrac{dy}{dx}= - y\\

\rm\implies \:\dfrac{dy}{dx} \:  =  \:  -  \: \dfrac{y}{x}  \\

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by kvalli8519
12

Refer the given attachment

Attachments:
Similar questions