English, asked by rafishaik38, 4 months ago

if
 {x}^{ \sqrt{x} }  = \sqrt{x}  ^{x }  thenfindx


Answers

Answered by shreekrishna35pdv8u8
2

Explanation:

{x}^{ \sqrt{x} } = \sqrt{x} ^{x } \\  {x}^{ \sqrt{x} }  =  {x}^{ \frac{1}{2}x }  \\  \sqrt{x}  =  \frac{1}{2} x \\ x = 2 \sqrt{x}

Answered by diwanamrmznu
55

========================================

\huge\star\pink{solution}

 =  > x {}^{ \sqrt{x} }  =  \sqrt{x}  {}^{x}  \\  \\  =  > x {}^{ \sqrt{x} } = x {}^{ \frac{x}{2} } \\  \\  \: rhs \: and \: lhs \: base \: are \: same \\ so \: power \: rule \: compairison \\ rhs \: and \: lhs \: power \\  \\  =  >  \sqrt{x}    =  \frac{x}{2}  \\  \\  =  > x = 2 \sqrt{x}

========================================

uses

 =  \sqrt{x}  = x {}^{ \frac{1}{2 } }  \\

=====================≈=================

I hope it helps you

Similar questions