Math, asked by anshuraj92119211, 3 months ago

If
x
=
9 + 4 \sqrt{5}
find
 \sqrt{x}  -  \frac{1}{ \sqrt{x} }

Answers

Answered by Asterinn
146

Given :-

x = 9 + 4√5

To find :-

 \rm \sqrt{x}  -  \dfrac{1}{ \sqrt{x} }

Solution :-

We know that :- (a-b)² = a²+b²-2ab

  \rm\therefore  \rm  {\bigg(\rm \sqrt{x}  -  \dfrac{1}{ \sqrt{x} }  \bigg)}^{2}  =  {( \sqrt{x}) }^{2}  +  { \bigg(\dfrac{1}{ \sqrt{x} } \bigg)}^{2}   -  \bigg( 2 \times \sqrt{x} \times \dfrac{1}{ \sqrt{x}} \bigg)

\rm\longrightarrow  \rm  {\bigg(\rm \sqrt{x}  -  \dfrac{1}{\sqrt{x} }  \bigg)}^{2}  =  x  +  { \bigg(\dfrac{1}{{x} } \bigg)}   -  2

Now, value of x is given but we have to find value of (1/x).

x = 9 + 4√5

  \rm \rightarrow \dfrac{1}{x}  =  \dfrac{1}{9 + 4 \sqrt{5} }

\rm \rightarrow \dfrac{1}{x}  =  \dfrac{1}{9 + 4 \sqrt{5} }  \times\dfrac{9  -  4 \sqrt{5}}{9  -  4 \sqrt{5} }

\rm \rightarrow \dfrac{1}{x}  =  \dfrac{9  -  4 \sqrt{5}}{ {(9)}^{2}  -   {(4 \sqrt{5})}^{2}  }

\rm \rightarrow \dfrac{1}{x}  =  \dfrac{9  -  4 \sqrt{5}}{ 81 -   80  }

\rm \rightarrow \dfrac{1}{x}  =  \dfrac{9  -  4 \sqrt{5}}{ 1  }

\rm \rightarrow \dfrac{1}{x}  = {9  -  4 \sqrt{5}}

\rm\longrightarrow  \rm  {\bigg(\rm \sqrt{x}  -  \dfrac{1}{\sqrt{x} }  \bigg)}^{2}  =  9 + 4 \sqrt{5}  +  9 - 4 \sqrt{5}   -  2

\rm\longrightarrow  \rm  {\bigg(\rm \sqrt{x}  -  \dfrac{1}{\sqrt{x} }  \bigg)}^{2}  =  18   -  2

\rm\longrightarrow  \rm  {\rm \sqrt{x}  -  \dfrac{1}{\sqrt{x} }  }  =   \sqrt{16}

\rm\longrightarrow  \rm  {\rm \sqrt{x}  -  \dfrac{1}{\sqrt{x} }  }  =    \pm4

Answer : ± 4


pandaXop: Perfect answer bro
Asterinn: Thank you sis!
Answered by StormEyes
51

\sf \Large Solution!!

\sf \large Given:

\sf \to x=9+4\sqrt{5}

\sf \large To\:find:

\sf \to \sqrt{x}-\dfrac{1}{\sqrt{x}}

We will use the identity: (a-b)² = a² + b² - 2ab

\sf \to \bigg(\sqrt{x}-\dfrac{1}{\sqrt{x}}\bigg)^{2}=(\sqrt{x})^{2}+\bigg(\dfrac{1}{\sqrt{x}}\bigg)^{2}-2(\cancel{\sqrt{x}})\bigg(\dfrac{1}{\cancel{\sqrt{x}}}\bigg)

\sf \to \bigg(\sqrt{x}-\dfrac{1}{\sqrt{x}}\bigg)^{2}=x+\dfrac{1}{x}-2

Now, we have to find the value of \sf \dfrac{1}{x}

\sf \to \dfrac{1}{x}=\dfrac{1}{9+4\sqrt{5}}

Rationalising the denominator.

\sf \to \quad =\dfrac{1}{9+4\sqrt{5}}\times \dfrac{9-4\sqrt{5}}{9-4\sqrt{5}}

\sf \to \quad =\dfrac{9-4\sqrt{5}}{(9+4\sqrt{5})(9-4\sqrt{5})}

We can use the identity → (a+b)(a-b)=a² - b² ← in the denominator.

\sf \to \quad =\dfrac{9-4\sqrt{5}}{(9)^{2}-(4\sqrt{5})^{2}}

\sf \to \quad =\dfrac{9-4\sqrt{5}}{81-80}

\sf \to \quad =\dfrac{9-4\sqrt{5}}{1}

\sf \to \dfrac{1}{x}=9-4\sqrt{5}

Now, let's apply these values in the formula \\→ \bigg(\sqrt{x}-\dfrac{1}{\sqrt{x}}\bigg)^{2}=x+\dfrac{1}{x}-2 ←

\sf \to \bigg(\sqrt{x}-\dfrac{1}{\sqrt{x}}\bigg)^{2}=(9+4\sqrt{5})+(9-4\sqrt{5})-2

\sf \to \bigg(\sqrt{x}-\dfrac{1}{\sqrt{x}}\bigg)^{2}=9\cancel{+4\sqrt{5}}+9\cancel{-4\sqrt{5}}-2

\sf \to \bigg(\sqrt{x}-\dfrac{1}{\sqrt{x}}\bigg)^{2}=16

\sf \to \sqrt{x}-\dfrac{1}{\sqrt{x}}=\sqrt{16}

\bold{\boxed{\blue{\sf \sqrt{x}-\dfrac{1}{\sqrt{x}}=±4}}}

Similar questions