If
then show that
Answers
Step-by-step explanation:
this is proved that left hand side = right hand side
Step-by-step explanation:
We have,
x + y + z = 0
Squaring both sides,
(x + y + z)² = 0²
Using the identity,
(a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
(x + y + z)² = 0²
x² + y² + z² + 2(xy + yz + xz) = 0
x² + y² + z² = -2(xy + yz + xz)
Again Squaring both sides,
(x² + y² + z²)² = [-2(xy + yz + xz)]²
Using the identity,
(a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
(x²)² + (y²)² + (z²)² + 2(x²y² + y²z² + x²z²)
= [(-2)²(xy + yz + xz)²]
x⁴ + y⁴ + z⁴ + 2(x²y² + y²z² + x²z²) = [4(xy + yz + xz)²]
x⁴ + y⁴ + z⁴ = [4(xy + yz + xz)²] - 2(x²y² + y²z² + x²z²)
Using the identity again,
x⁴ + y⁴ + z⁴ = [4(x²y² + y²z² + x²z² + 2(xy × yz + yz × xz + xy × xz)] - 2(x²y² + y²z² + x²z²)
x⁴ + y⁴ + z⁴ = [4(x²y² + y²z² + x²z² + 2(xy²z + xyz² + x²yz))] - 2(x²y² + y²z² + x²z²)
x⁴ + y⁴ + z⁴ = 4x²y² + 4y²z² + 4x²z² + 8(xy²z + xyz² + x²yz) - 2x²y² - 2y²z² - 2x²z²
x⁴ + y⁴ + z⁴ = 4x²y² + 4y²z² + 4x²z² - 2x²y² - 2y²z² - 2x²z² + 8(xy²z + xyz² + x²yz)
x⁴ + y⁴ + z⁴ = 2x²y² + 2y²z² + 2x²z² + 8(xy²z + xyz² + x²yz)
x⁴ + y⁴ + z⁴ = 2(x²y² + y²z² + x²z²) + 8xyz(y + z + x)
x⁴ + y⁴ + z⁴ = 2(x²y² + y²z² + x²z²) + 8xyz(x + y + z)
But we know that,
x + y + z = 0
So,
x⁴ + y⁴ + z⁴ = 2(x²y² + y²z² + x²z²) + 8xyz(0)
x⁴ + y⁴ + z⁴ = 2(x²y² + y²z² + x²z²) + 0
x⁴ + y⁴ + z⁴ = 2(x²y² + y²z² + x²z²)
Hence proved
Hope it helped and believing you understood it........All the best