Physics, asked by SharmaShivam, 1 year ago

If xy^2=1, prove that 2\dfrac{dy}{dx}+y^3=0


mrzombzo7: this is not physics

Answers

Answered by Anonymous
6

xy^2=1---(1)

\implies y^2=\dfrac{1}{x}----(2)

Differentiate eq(1) with respect to x :

\dfrac{d}{dx}(xy^2)=\dfrac{d}{dx}(1)\\\\\implies x(\dfrac{d}{dx}(y^2))+y^2(\dfrac{d}{dx}(x))=0\\\\\implies 2xy\dfrac{dy}{dx}+y^2=0\\\\\implies y(2x(\dfrac{dy}{dx})+y)=0\\\\\implies 2x(\dfrac{dy}{dx})+y=0\\\\\textbf{From eq(2) we get :}\\\\\implies \dfrac{2}{y^2}(\dfrac{dy}{dx})+y=0\\\\\implies 2\dfrac{dy}{dx}+y^3=0

NOTE :

\dfrac{d}{dx}(1)=0

\dfrac {d}{dx}}(u\cdot v)={\dfrac {du}{dx}}\cdot v+u\cdot {\dfrac {dv}{dx}

Answered by siddhartharao77
4

Explanation:

Given xy² = 1

We have to find the derivative of it.

On differentiating both sides, we get

\Longrightarrow \frac{d}{dx}(xy^2) = \frac{d}{dx}(1)

\Longrightarrow \frac{d}{dx}(x)y^2 + \frac{d}{dx}(y^2)x = 0

\Longrightarrow 1.y^2 + 2y \frac{d}{dx}(y)x = 0

\Longrightarrow y^2 + 2xy \frac{d}{dx}(y) = 0

\Longrightarrow y^2 + 2xyy' = 0

\Longrightarrow y^2 = -2xyy'

\Longrightarrow y' = -\frac{y}{2x}

\Longrightarrow \frac{d}{dx}(y) = -\frac{y}{2x}

LHS:

\Longrightarrow 2\frac{dy}{dx} + y^3

\Longrightarrow 2(-\frac{y}{2x}) + y^3

\Longrightarrow -\frac{y}{x} + y^3

\Longrightarrow y(y^2 - \frac{1}{x})

\Longrightarrow y(\frac{1}{x} - \frac{1}{x}) \ [ \because xy^2 = 1 \rightarrow y^2 = \frac{1}{x}]

\Longrightarrow \textbf {0}

RHS

Hope it helps!


Anonymous: ❣Wonder answer brother ❣
siddhartharao77: Thank you sis
Similar questions