Math, asked by guptaananya2005, 17 days ago

If

y =  {sin}^{ - 1}(cosx) \: when \: x \in \: (0 \: to \: \pi) \: or \: (\pi \: to \: 2\pi)

Find dy/dx

Moderators, Stars or Best Users​

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {sin}^{ - 1}(cosx)

can be rewritten as

\rm :\longmapsto\:y =  \dfrac{\pi}{2} -  {cos}^{ - 1}(cosx)

We know that

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: {cos}^{ - 1}(cosx) =  \begin{cases} &\sf{x \:  \: when \: x \:  \in \: (0, \: \pi)}  \\ \\ &\sf{2\pi - x \:  \: when \: x \:  \in \: (\pi, \: 2\pi)} \end{cases}\end{gathered}\end{gathered}

So,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\dfrac{\pi}{2} - {cos}^{ - 1}(cosx) =  \begin{cases} &\sf{\dfrac{\pi}{2} - x \:  \: when \: x \:  \in \: (0, \: \pi)}  \\ \\ &\sf{\dfrac{\pi}{2} - (2\pi - x )\:  \: when \: x \:  \in \: (\pi, \: 2\pi)} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:y =  \begin{cases} &\sf{\dfrac{\pi}{2} - x \:  \: when \: x \:  \in \: (0, \: \pi)}  \\ \\ &\sf{\dfrac{\pi}{2} - 2\pi  +  x \:  \: when \: x \:  \in \: (\pi, \: 2\pi)} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:y =  \begin{cases} &\sf{\dfrac{\pi}{2} - x \:  \: when \: x \:  \in \: (0, \: \pi)}  \\ \\ &\sf{ - \dfrac{3\pi}{2} +  x \:  \: when \: x \:  \in \: (\pi, \: 2\pi)} \end{cases}\end{gathered}\end{gathered}

So, On differentiating with respect to x, we get

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\dfrac{d}{dx}y =  \begin{cases} &\sf{\dfrac{d}{dx}\bigg[\dfrac{\pi}{2} - x\bigg] \:  \: when \: x \:  \in \: (0, \: \pi)}  \\ \\ &\sf{\dfrac{d}{dx}\bigg[ - \dfrac{3\pi}{2} +  x\bigg] \:  \: when \: x \:  \in \: (\pi, \: 2\pi)} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\dfrac{dy}{dx} =  \begin{cases} &\sf{ - 1 \:  \: when \: x \:  \in \: (0, \: \pi)}  \\ \\ &\sf{ \:  \:  \:1 \:  \: when \: x \:  \in \: (\pi, \: 2\pi)} \end{cases}\end{gathered}\end{gathered}

Hence,

 \red{ \boxed{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\dfrac{dy}{dx} =  \begin{cases} &\sf{ - 1 \:  \: when \: x \:  \in \: (0, \: \pi)}  \\ \\ &\sf{ \:  \:  \:1 \:  \: when \: x \:  \in \: (\pi, \: 2\pi)} \end{cases}\end{gathered}\end{gathered}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions