Math, asked by guptaananya2005, 4 days ago

If
y =  {sin}^{ - 1}  \frac{ {2}^{x + 1} \times  {5}^{x} }{1 +  {100}^{x} }  \: find \:  \frac{dy}{dx}

quality answer expected

Spammers please far away

Moderators, Stars or Best Users.

Please solve.

Thank you Brainly to provide platform for queries. ​

Answers

Answered by mathdude500
4

 \green{\large\underline{\sf{Solution-}}}

Given function is

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg[\dfrac{ {2}^{x + 1}  \times  {5}^{x} }{1 +  {100}^{x} } \bigg]

can be rewritten as

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg[\dfrac{2 \times {2}^{x}  \times  {5}^{x} }{1 +  {( {10}^{2}) }^{x} } \bigg]

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg[\dfrac{2 \times  {(2 \times 5)}^{x} }{1 +  {10}^{2x} } \bigg]

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg[\dfrac{2 \times  {10}^{x} }{1 +  {10}^{2x} } \bigg]

We know,

\boxed{ \tt{ \:  {sin}^{ - 1}\bigg[\dfrac{2x}{1 +  {x}^{2} } \bigg] = 2 {tan}^{ - 1}x \: }}

So, using this, we get

\rm :\longmapsto\:y \:  =  \: 2 \:  {tan}^{ - 1} {10}^{x}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y \:  =  \: \dfrac{d}{dx}[2 \:  {tan}^{ - 1} {10}^{x}]

\rm :\longmapsto\:\dfrac{dy}{dx}\:  = 2 \: \dfrac{d}{dx}\:  {tan}^{ - 1} {10}^{x}

We know that,

\boxed{ \tt{ \: \dfrac{d}{dx} {tan}^{ - 1}x =  \frac{1}{1 +  {x}^{2} } \: }} \\  \\ and \\  \\ \boxed{ \tt{ \: \dfrac{d}{dx}f[g(x)] = f'[g(x)]\dfrac{d}{dx}g(x) \: }} \\

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{1 +  {( {10}^{x})}^{2} }\dfrac{d}{dx} {10}^{x}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{1 +  {100}^{x} }  \times {10}^{x}  \times  log_{e}(10)

 \purple{\rm \implies\:\boxed{ \tt{ \: \dfrac{dy}{dx} =  \frac{ {10}^{x}  \: log_{e}(10) }{1 +  {100}^{x} } \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

 \green{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}\\ \\ \sf   {sin}^{ - 1}x & \sf \dfrac{1}{ \sqrt{1 -  {x}^{2} } } \\ \\ \sf  {cos}^{ - 1}x  & \sf  \dfrac{ - 1}{ \sqrt{1 -  {x}^{2} } } \\ \\ \sf  {tan}^{ - 1}x  & \sf  \dfrac{1}{1 +  {x}^{2} } \\ \\ \sf  {sec}^{ - 1}x & \sf   \dfrac{1}{x \sqrt{ {x}^{2} - 1 } }   \end{array}} \\ \end{gathered}}

Similar questions