Math, asked by Anonymous, 11 months ago

If
y =  {sinx}^{ {sinx}^{sinx.... \infty } }  \\  \\
prove that

 \frac{dy}{dx}  =  \frac{ {y}^{2}cotx }{1 - ylogsinx}

Answers

Answered by kaushik05
162

 \huge\red{\color{pink}{\fcolorbox{cyan}{black}{solution}}}

Given:

  \red{ \star} y =  { sinx}^{ {sinx}^{sinx... \infty } }  \\

To prove:

 \red\star \:  \frac{dy}{dx}  =  \frac{ {y}^{ ^{2} }  cotx}{ 1 - y log \: sinx}  \\

\red{\color{white}{\fcolorbox{cyan}{black}{Answer:-}}}

 \leadsto \: y =  {sinx}^{ {sinx}^{sinx.. \infty } }  \\  \\ \leadsto \: y =  ({sinx})^{y}

Take Log both sides , we get

 \leadsto \:  log(y)  =  log(( {sinx})^{y} )  \\  \\  \leadsto \:  log(y)  = y log(sinx)

Differentiate both sides w.r.t X

 \leadsto \:  \frac{d}{dx}  log(y)  =  \frac{d}{dx} (y \:  log(sinx) ) \ \\   \\  \leadsto \:  \frac{1}{y}  \frac{dy}{dx}  = y \frac{d}{dx} ( log(sinx) ) +  log(sinx)  \frac{dy}{dx}  \\  \\  \leadsto \:  \frac{1}{y}  \frac{dy}{dx}  =  \frac{y}{sinx} ( cosx) +  log(sinx)  \frac{dy}{dx}  \\  \\  \leadsto \:  \frac{dy}{dx} ( \frac{1}{y}  -   log(sinx) ) = y(  cotx) \\  \\ \leadsto \:  \frac{dy}{dx} ( \frac{1 - y log(sinx) }{y} ) = y( cotx) \\  \\  \leadsto \:  \frac{dy}{dx}  =  \frac{ {y}^{2}cotx }{1 - y log(sinx) }

 \huge\red{\color{green}{\fcolorbox{cyan}{black}{proved}}}

\red{\color{white}{\fcolorbox{cyan}{black}{formula}}}

 \star \bold{ \frac{d}{dx} (u.v) =  u \frac{dv}{dx}  + v \frac{du}{dx} }

 \star \bold{  \frac{d}{dx}  log(x)  =  \frac{1}{x} } \\  \\ \star \bold{ \frac{d}{dx} sinx = cosx}


Anonymous: Splendid
kaushik05: thanku :)
Answered by Anonymous
35

Formulae used:

 \frac{d}{dx} (x.y) = x \frac{d}{dx} (y) + y \frac{d}{dx} (x) \\  \\  \frac{d}{dx} (sinx) = cosx \\  \\  \frac{d}{dx} (logy) =  \frac{1}{y}

Attachments:

kaushik05: Nice :)
Similar questions