Math, asked by madhav5245, 1 month ago

If

y =  \sqrt{ {h}^{ {cos}^{ - 1t}} }

and

x =  \sqrt{ {h}^{ {sin}^{ - 1} t} }

Prove that dy/dx= -y/x

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:y =  \sqrt{ {h}^{ {cos}^{ - 1}t } }  -  -  -  - (1)

and

\rm :\longmapsto\:x =  \sqrt{ {h}^{ {sin}^{ - 1}t } }  -  -  - (2)

On multiply equation (1) and (2), we get

\rm :\longmapsto\:xy =  \sqrt{ {h}^{ {cos}^{ - 1}t } } \times \sqrt{ {h}^{ {sin}^{ - 1}t } }

We know,

\boxed{ \tt{ \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}  \: }}

So, using this Law of radicals, we get

\rm :\longmapsto\:xy = \sqrt{ {h}^{ {cos}^{ - 1}t  +  {sin}^{ - 1} t} }

We know,

\boxed{ \tt{ \:  {cos}^{ - 1}x +  {sin}^{ - 1}x =  \frac{\pi}{2} \: }}

So, using this identity, we get

\rm :\longmapsto\:xy \:  =  \:  \sqrt{ {\bigg[h\bigg]}^{\dfrac{\pi}{2} } }

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}xy \:  = \dfrac{d}{dx} \:  \sqrt{ {\bigg[h\bigg]}^{\dfrac{\pi}{2} } }

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}uv \:  =  \: u\dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u \: }}

and

\boxed{ \tt{ \: \dfrac{d}{dx}k \:  =  \: 0 \: }}

So, using this, we get

\rm :\longmapsto\:x\dfrac{d}{dx}y \:  +  \: y\dfrac{d}{dx}x \:  =  \: 0

\rm :\longmapsto\:x\dfrac{dy}{dx} + y \times 1 = 0

\rm :\longmapsto\:x\dfrac{dy}{dx} + y = 0

\rm :\longmapsto\:x\dfrac{dy}{dx} =  - y

\bf\implies \:\dfrac{dy}{dx} \:  =  \:  -  \: \dfrac{y}{x}

Hence, Proved

Additional Information :-

 \green{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cox & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Answered by XxitsmrseenuxX
1

Answer:

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:y =  \sqrt{ {h}^{ {cos}^{ - 1}t } }  -  -  -  - (1)

and

\rm :\longmapsto\:x =  \sqrt{ {h}^{ {sin}^{ - 1}t } }  -  -  - (2)

On multiply equation (1) and (2), we get

\rm :\longmapsto\:xy =  \sqrt{ {h}^{ {cos}^{ - 1}t } } \times \sqrt{ {h}^{ {sin}^{ - 1}t } }

We know,

\boxed{ \tt{ \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}  \: }}

So, using this Law of radicals, we get

\rm :\longmapsto\:xy = \sqrt{ {h}^{ {cos}^{ - 1}t  +  {sin}^{ - 1} t} }

We know,

\boxed{ \tt{ \:  {cos}^{ - 1}x +  {sin}^{ - 1}x =  \frac{\pi}{2} \: }}

So, using this identity, we get

\rm :\longmapsto\:xy \:  =  \:  \sqrt{ {\bigg[h\bigg]}^{\dfrac{\pi}{2} } }

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}xy \:  = \dfrac{d}{dx} \:  \sqrt{ {\bigg[h\bigg]}^{\dfrac{\pi}{2} } }

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}uv \:  =  \: u\dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u \: }}

and

\boxed{ \tt{ \: \dfrac{d}{dx}k \:  =  \: 0 \: }}

So, using this, we get

\rm :\longmapsto\:x\dfrac{d}{dx}y \:  +  \: y\dfrac{d}{dx}x \:  =  \: 0

\rm :\longmapsto\:x\dfrac{dy}{dx} + y \times 1 = 0

\rm :\longmapsto\:x\dfrac{dy}{dx} + y = 0

\rm :\longmapsto\:x\dfrac{dy}{dx} =  - y

\bf\implies \:\dfrac{dy}{dx} \:  =  \:  -  \: \dfrac{y}{x}

Hence, Proved

Additional Information :-

 \green{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cox & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions