If
Then find dy/dx at x=pi/4
Answers
Answer:
y=tanxtanxtanx
Let m=tanxtanx
y=tanxm
Applying logarithmic differentiation as the given function is of the form of a function raised to the power of another function
logy=m∙log(tanx)
Differentiating on both sides with respect to x
1y∙dydx=m∙log(tanx)
In the RHS of the equation we need to apply product rule
1y∙dydx=1tanx×sec2x.m
+log(tanx)×dmdx
dydx=y(1tanx×sec2x.m+log(tanx)×dmdx)⋯(1)
ddx(logx)=1x
ddx(tanx)=sec2x
Now, dmdx
m=tanxtanx
Applying logarithmic differentiation,
logm=logtanxtanx
logm=tanx.log(tanx)
Differentiating on both sides with respect to x
1m∙dmdx=sec2x∙log(tanx)+1tanx×sec2x×tanx
(uv)′=u′v+v′u
dmdx=m[sec2x∙log(tanx)+sec2x]
dmdx=tanxtanx ∙sec2x[1+log(tanx)]⋯(2)
Substituting (2) in (1),
We obtain,
dydx=tanxtanxtanx(sec2x.tanxtanx−1+tanxtanxsec2x(1+log(tanx))
Step-by-step explanation:
y=tanxtanxtanx
Let u=tanx→y=uuu
From the chain rule, dydx=dydu⋅dudx
dudx is sec2x, however dydu is more complicated.
Consider a=uuu
lna=lnuuu
lna=uulnu
Differentiating implicitly:
1adadu=[uu]′lnu+uu[lnu]′
[uu]′ is also not simple, so consider b=uu
lnb=lnuu
lnb=ulnu
Differentiating implicitly:
1bdbdu=lnu+1
dbdu=b(lnu+1)
dbdu=uu(lnu+1)
∴[uu]′=uu(lnu+1)
Therefore1adadu=uu(lnu+1)lnu+uuu
1adadu=uu(lnu+1)lnu+uu−1
dadu=a(uuln2u+uulnu+uu−1)
dadu=uuu(uuln2u+uulnu+uu−1)
Therefore [uuu]′=uuu(uuln2u+uulnu+uu−1)
Therefore dydx=sec2x(uuu(uuln2u+uulnu+uu−1))
Substituting back in:
dydx=sec2xtanxtanxtanx(tanxtanxln2tanx+tanxtanxlntanx+tanxtanx−1