Economy, asked by afrinaslam0123, 7 months ago

if
y = ({x}^{2}  - 3x + 1) {}^{ \frac{5}{2} }
find
 \frac{d {}^{2} y}{d {x}^{2} }
at x = 0

Answers

Answered by Bhosale2002
1

Answer:

 \frac{15}{4} ( { {x}^{2}  - 3x + 1)}^{ \frac{1}{2} }  ({2x - 3})^{2}  + 5( { {x}^{2}  - 3x + 1})^{ \frac{3}{2} }

Explanation:

 \frac{dy}{dx}  =  \frac{5}{2} { ( {x}^{2}  - 3x + 1)} ^{ \frac{3}{2} } (2x - 3)

 \frac{ {d}^{2}y }{d {x}^{2} }  =  \frac{15}{4}  { ( {x}^{2}  - 3x + 1)} ^{ \frac{1}{2} }(2x - 3)(2x - 3) +  \frac{5}{2} {( {x }^{2}  - 3x + 1) }^{ \frac{3}{2} } (2)

 \frac{ {d}^{2}y }{d {x}^{2} }  =  \frac{15}{4}{ ( {x }^{2}  - 3x + 1)}^{ \frac{1}{2} }  ({2x - 3})^{2}  +  5{( {x}^{2}   -  3x + 1)}^{ \frac{3}{2} }

Similar questions