Math, asked by karansinghsaggu, 4 days ago

If

y =  {(x +  \sqrt{ {x}^{2} + 1 }) }^{m}  \:

prove that

 \frac{dy}{dx}  =  \frac{my}{ \sqrt{ {x}^{2}  + 1} }

Answers

Answered by shivambishal192
23

Answer:

the answer is in the picture.

Step-by-step explanation:

if you find my answer any helpful then please do rank me as the brainliest.

Attachments:
Answered by mathdude500
46

\large\underline{\sf{Solution-}}

Given expression is

\rm \: y=  \:  {(x +  \sqrt{ {x}^{2}  + 1} )}^{m}  \\

On taking log on both sides, we get

\rm \: logy=  \: log {(x +  \sqrt{ {x}^{2}  + 1} )}^{m}  \\

We know,

\boxed{\sf{  \:\rm \: log {x}^{y} = y \: logx \: }} \\

So, using this result, we get

\rm \: logy=  \:m \:  log {(x +  \sqrt{ {x}^{2}  + 1} )}  \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}logy=  \:m \:  \dfrac{d}{dx} \: log {(x +  \sqrt{ {x}^{2}  + 1} )}  \\

We know,

\boxed{\sf{  \:\rm \: \dfrac{d}{dx}logx \:  =  \:  \frac{1}{x} \:  \: }} \\

So, using this result, we get

\rm \: \dfrac{1}{y}\dfrac{dy}{dx} =m \:  \dfrac{1}{x +  \sqrt{ {x}^{2}  + 1} } \dfrac{d}{dx}(x +  \sqrt{ {x}^{2} + 1 } ) \\

We know,

\boxed{\sf{  \:\rm \: \dfrac{d}{dx} {x}^{n}  \:  =  \:  {nx}^{n \:  -  \: 1}  \:  \: }} \\

and

\boxed{\sf{  \:\rm \: \dfrac{d}{dx} \sqrt{x} \:  =  \:  \frac{1}{2 \sqrt{x} }  \:  \: }} \\

So, using this result, we get

\rm \: \dfrac{dy}{dx} = \:  \dfrac{my}{x +  \sqrt{ {x}^{2}  + 1} }  \bigg[1 + \dfrac{1}{2 \sqrt{ {x}^{2}  + 1} } \: \dfrac{d}{dx}( {x}^{2} + 1)  \bigg] \\

\rm \: \dfrac{dy}{dx} = \:  \dfrac{my}{x +  \sqrt{ {x}^{2}  + 1} }  \bigg[1 + \dfrac{1}{2 \sqrt{ {x}^{2}  + 1} } \: (2x + 0)  \bigg] \\

\rm \: \dfrac{dy}{dx} = \:  \dfrac{my}{x +  \sqrt{ {x}^{2}  + 1} }  \bigg[1 + \dfrac{1}{2 \sqrt{ {x}^{2}  + 1} } \: (2x)  \bigg] \\

\rm \: \dfrac{dy}{dx} = \:  \dfrac{my}{x +  \sqrt{ {x}^{2}  + 1} }  \bigg[1 + \dfrac{x}{ \sqrt{ {x}^{2}  + 1} }   \bigg] \\

\rm \: \dfrac{dy}{dx} = \:  \dfrac{my}{x +  \sqrt{ {x}^{2}  + 1} }  \bigg[\dfrac{ \sqrt{ {x}^{2}  + 1} +  x}{ \sqrt{ {x}^{2}  + 1} }   \bigg] \\

\rm\implies \: \: \boxed{\sf{  \: \: \rm \: \dfrac{dy}{dx} = \:  \dfrac{my}{  \sqrt{ {x}^{2}  + 1} }  \:  \: }}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}


amansharma264: Excellent
Similar questions