Math, asked by monjyotiboro, 2 months ago

If z=x+iy and |2z+1|=|z-3| , then show that 3x^2+3y^2+10x=8


please help..moderators​

Answers

Answered by mathdude500
3

Given :-

\rm :\longmapsto\:z = x + iy

\rm :\longmapsto\: |2z + 1| =  |z - 3|

To Show :-

\rm :\longmapsto\: {3x}^{2} +  {3y}^{2} + 10x = 8

Basic Concept Used :-

Modulus of a complex number

Let us consider a complex number z = x + iy, then Modulus of z is represented as |z| and is given by

\rm :\longmapsto\: |z| =  \sqrt{ {x}^{2} +  {y}^{2}  }

Solution :-

Given that

\rm :\longmapsto\:z = x + iy

and

\rm :\longmapsto\: |2z + 1| =  |z - 3|

On substituting the value of z = x + iy, we get

\rm :\longmapsto\: |2(x + iy) + 1| =  |x + iy - 3|

\rm :\longmapsto\: |2x + 2iy + 1| =  |x + iy - 3|

\rm :\longmapsto\: |(2x  + 1)+ 2iy| =  |(x - 3) + iy|

\rm :\longmapsto\: \sqrt{ {(2x + 1)}^{2}  +  {(2y)}^{2} } =  \sqrt{ {(x - 3)}^{2}  +  {y}^{2} }

On squaring both sides, we get

\rm :\longmapsto\:  {(2x + 1)}^{2}  +  {(2y)}^{2} =   {(x - 3)}^{2}  +  {y}^{2}

\rm :\longmapsto\: {4x}^{2} + 1 + 4x +  {4y}^{2} =  {x}^{2} + 9 - 6x +  {y}^{2}

\bf\implies \: {3x}^{2} +  {3y}^{2} - 10x = 8

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

If z is a complex number, then

\rm :\longmapsto\: |z|  =  | \overline{z}|

\rm :\longmapsto\: |z \overline{z}| =  { |z| }^{2}

\rm :\longmapsto\: |z_1z_2|  =  |z_1|  |z_2|

\rm :\longmapsto\:\overline{z_1 + z_2} \:  =  \: \overline{z_1} + \overline{z_2}

\rm :\longmapsto\:\overline{z_1  -  z_2} \:  =  \: \overline{z_1}  -  \overline{z_2}

\rm :\longmapsto\:\overline{z_1z_2} \:  =  \: \overline{z_1}  \:  \:  \:  \overline{z_2}

Similar questions