Math, asked by shrikantsabalkar99, 9 months ago

If the 10th term of an A.P is 52 and 17th term is 20 more than the 13th term, find A.P. ​

Answers

Answered by ItzRadhika
21

{\huge{\underline{\underline{\sf{\blue{SOLUTION:-}}}}}}

Question

⠀⠀⠀⠀ • If the 10th term of an A.P is 52 and 17th ⠀⠀⠀⠀term is 20 more than the 13th term, find A.P.

Given

⠀⠀⠀⠀ • a10 = 52

⠀⠀⠀⠀ • a17 = 20+a13

To Calculate

⠀⠀⠀⠀ • Find A.P

Step by step explanation

⠀⠀

⠀⠀⠀⠀ ⠀ Using formula ⤵️

⠀⠀

⠀⠀⠀ ⠀ ⠀⠀ ☆ an = a+(n-1)×d ☆

⠀⠀

• a10 = 52 [ Given]

Putting values,

➡️ 52= a+(10-1)×d

➡️ 52 = a+9d________________(1)

• a17 = 20+a13 [ Given]

Putting values,

➡️ a+16d= 20+a+12d

➡️ 16d-12d = 20

➡️ 4d= 20

➡️ d= 20/4

➡️ d= 5

Putting value of d in eq 1

52= a+9d

➡️ 52= a+9×5

➡️ 52= a+45

➡️ a= 52-45

➡️ a= 7

⠀⠀

So, The A.P is 7, 12, 17,22.........

______________________________________________

Answered by Anonymous
23

\bf{\underline{\underline{Question:-}}}

If the 10th term of an A.P is 52 and 17th term is 20 more than the 13th term, find A.P..

\bf{\underline{\underline{Given:-}}}

  • \sf a_{10}=52
  • \sf a_{17}=a_{13}+20

\bf{\underline{\underline{Find:-}}}

  • A.P ?

\bf{\underline{\underline{Formula:-}}}

\bf{\underline{\boxed{\red{a_n=a+(n-1)d}}}}

where,

  • a = First term
  • d = common difference

\bf{\underline{\underline{Solution:-}}}

\sf → a_{10}=52

\sf → a+9d=52---equ(¡)

Similarly,

\sf → a_{17}=a_{13}+20

\sf → a+16d=a+12d+20

\sf → {\cancel{a}}+16d={\cancel{a}}+12d+20

\sf → 16d=12d+20

\sf → 16-12d=20

\sf → 4d=20

\sf→ d=\dfrac{\cancel{20}}{\cancel{4}}

\sf {\boxed{\red{d=5}}}

\bf{\underline{\underline{Substituting\: value\:of\:"d"\:in\:equ(¡) :-}}}

\sf → a+9d=52

\sf → a+9×5=52

\sf → a = 52-9×5

\sf{\boxed{\red{ a_{First\:term} = 7}}}

\bf{\underline{\underline{Hence:-}}}

  • The required A.P is
  • a , a + d , a + 2d , a + 3d

† A.P = 7 , 12 , 17 , 22 ....

Similar questions