Math, asked by hasan564, 8 months ago

If the 10th term of an A.P is 52 and 17th term is 20 more than the 13th term, find A.P. ​

Answers

Answered by Anonymous
9

Given a10=52

an=a+(n−1)d52=a+9d(1)

also, a17=20+a13a+16d=20+a+12d4d=20d=5(2)

From (1) and (2)

52=a+9×5a=7

The AP is: 7,12,17,22,...

Hope it helps you....

Answered by Anonymous
7

\;\;\underline{\textbf{\textsf{ Given:-}}}

\sf a_{10}=52

\sf a_{17}=a_{13}+20

\;\;\underline{\textbf{\textsf{ To Find :-}}}

• A.P

\;\;\underline{\textbf{\textsf{ Solution :-}}}

\underline{\:\textsf{ Here, we know the formula  :}}

\bf{\boxed{\underline{\green{a_n=a+(n-1)d}}}}

Where,

• a = First term

• d = common difference

\bf\underline{\green{\:\:\:\:\:\:\:\:A.T.Q:-\:\:\:\:\:\:\:}}

\sf → a_{10}=52

\sf → a+9d=52---eq(¡)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Again,

\sf → a_{17}=a_{13}+20

\sf → a+16d=a+12d+20

\sf → 16d=12d+20

\sf → 4d=20

\sf → d= 5

\underline{\:\textsf{Now,  put the  value of  "d"   :}}

\sf → a+9d=52

\sf → a+9×5=52

\sf → a = 52-9×5

\sf → a= 7

\bf{\underline{\underline{Now-}}}

The required A.P is _

a , a + d , a + 2d , a + 3d.........

Where,

• a = 7

• a + d = 5 + 7 = 12

• a + 2d = 17

• a + 3d = 22

\bf{\underline{\underline{Hence-}}}

• A.P = 7 , 12 , 17 , 22 ....

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions