If the 10th term of an ap is 52 and 7th 17th term is 20 more than its 13th term find the ap
Answers
Answered by
2
Step-by-step explanation:
The AP is 7,12,17,22,27.....
Here's is the explanation...
Hope it helps...
Attachments:
Answered by
1
Answer:
Step-by-step explanation:
Given the 10'th term of an AP is 52 and its 17'th term is 20 more than its 13'th term
We have to find out,
The AP and its 30'th term
10'th term is 52 i.e. t₁₀ = a + 9d
a + 9d = 52 (given) -----[1]
its 17th term is 20 more than its 13th term
t₁₇ = 20 + t₁₃
⇒ a + 16d = 20 + a + 12d
⇒ 4d - 20 = 0
⇒ 4d = 20
⇒ d = 5
Substitute 'd' in [1]
We get,
⇒ a + 9d = 52
⇒ a + 45 = 52
⇒ a = 7
30'th term = a + 29d
7 + (29 * 5) = 152
Required answer:
AP = 7 , 12 , 17 , 22 , 27
30'th term = 152
Similar questions