Math, asked by ssshhhh47, 7 months ago

If the 19th term of an AP is 39, find the sum of its first 37 terms​

Answers

Answered by Anonymous
10

\;\;\underline{\textbf{\textsf{ Given:-}}}

• 19th term of an AP is 39

\;\;\underline{\textbf{\textsf{ To Find :-}}}

• Sum of its first 37th terms

\;\;\underline{\textbf{\textsf{ Solution :-}}}

\underline{\:\textsf{ We know that  :}}

 \:  \boxed{\sf{  a_{n}  = a + (n - 1)d}} \\ \\

 \:  \boxed{\sf{  S_{n}  =  \frac{n}{2}  2a+ (n - 1)d}} \\ \\

\bf\underline{\green{\:\:\:\:\:\:\:\:A.T.Q:-\:\:\:\:\:\:\:}}

 \dashrightarrow {\sf{  a_{19} = a + (19 - 1)d }} \\ \\

 \dashrightarrow {\sf{ 39 = a + (19 - 1)d }} \\ \\

 \dashrightarrow {\sf{ 39 = a + 18d }}.......eq(1) \\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Again,

\dashrightarrow  {\sf{  s_{37} =  \frac{37}{2}[ 2a + (37 - 1)d] }} \\ \\

\dashrightarrow {\sf{  s_{37} =  \frac{37}{2} [2a + 36d ]}} \\ \\

 \dashrightarrow {\sf{  s_{37} =  \frac{37}{2} 2(a + 18d) }} \\ \\

 \dashrightarrow {\sf{  s_{37} =  37( a + 18d )}} \\ \\

 \dashrightarrow {\sf{  s_{37} =  37( 39 )}} \\ \\\sf From \: eq(1)

\dashrightarrow  {\sf{  s_{37} =  1443}} \\ \\

\;\;\underline{\textbf{\textsf{Hence -}}}

\underline{\textsf{  Sum of its first 37th terms is </p><p>\textbf{1443}}}.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
0

Step-by-step explanation:

Hey! There

1443 is the answer

Similar questions