Math, asked by mehak270, 9 months ago

If the 2nd term of an AP is 13 and the 5th term is 25, what is its 7th term?​

Answers

Answered by Anonymous
15

Solution:-

Given

 \rm : \implies T_2 = 13

 \rm : \implies T_5 = 25

To find

 \rm : \implies \: T_7

Formula

  :  \implies \boxed{\rm \: T_n = a + (n - 1)d}

Now

  :  \implies\rm \: a \:  + d = 13 \:  \:  \:  \:  \: .......(i)

  : \implies  \rm \: a \:  + 4d = 25 \:  \:  \:  \: .........(ii)

Subtract( i )from (ii)

 \rm : \implies a + 4d - (a + d) = 25 - 13

 \rm :  \implies \:  \cancel{a} + 4d \:  -  \cancel{a} - d = 12

\rm :  \implies 3d = 12

\rm :  \implies d =  \dfrac{12}{3}  = 4

\rm :  \implies d \:  = 4

Now put the value of d on (i) eq

:  \implies\rm \: a \:  + d = 13 \:  \:  \:  \:  \: .......(i)

\rm :  \implies a + 4 = 13

\rm :  \implies a = 13 - 4

\rm :  \implies a = 9

Now we get a = 9 and d = 4 , so we have to find

\rm :  \implies T_7 = a + 6d

\rm :  \implies T_7 = 9 + 6 \times 4

\rm :  \implies T_7 = 9 + 24

\rm :  \implies T_7 = 33

So

 \rm \:  \boxed{ \rm \: T_7 = 33}

Similar questions