Math, asked by rajagurums2440, 6 months ago

If the 3rd and 6th term of Arithmetic progression are 7and 13 respectively work out the sum of the first 20 term of the series

Answers

Answered by Ataraxia
9

Solution :-

Let,

First term = a

Common difference = d

We know,

\bf a_n = a+ (n-1)d

\bullet \sf \ 3^{rd} \ term = 7

 \longrightarrow \sf a+(3-1)d = 7 \\\\\longrightarrow a+2d = 7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  ......................(1)

\bullet \sf \ 6^{th} \ term = 13

 \longrightarrow\sf a+(6-1)d = 13 \\\\\longrightarrow a+5d = 13 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  ......................(2)

Eq (2) - Eq (1),

\longrightarrow\sf 3d = 6 \\\\\longrightarrow\bf d = 2

Substitute the value of d in eq (1),

\longrightarrow\sf a+2\times 2 = 7 \\\\\longrightarrow a+ 4 = 7 \\\\\longrightarrow \bf a = 3

\bf Sum \ of \ first \ n \ terms = \dfrac{n}{2} \times [ \ 2a+(n-1)d \ ]

\longrightarrow \sf Sum \ of \ first \ 20 \ terms = \dfrac{20}{2} \times [ \ 2\times 3 +(20-1) \times 2 \ ]

                                       = \sf 10 \times [ \ 6+19\times 2 \ ] \\\\= 10 \times [ \ 6 + 38 \ ] \\\\= 10 \times 44\\\\= 440

Similar questions