if the 3rd and the 9 th term of an AP are 4 and -8 respectively which term of this AP is zero
Answers
Answered by
2
Step-by-step explanation:
may it help you.
dont forget to like and follow.
mark me as brainliest.
Attachments:
Answered by
23
To Solve:
- Which Term of the A.P will be 0
Given:
- 3rd term = 4
- 9th term = -8
Solⁿ:
- Make Eqⁿ
- Solve by Elimination Method
- Find value of d and a
- Find the n term
3rd term = 4
Eqⁿ:
a + 2d = 4 -----------(1)
9th term = -8
Eqⁿ:
a + 8d = -8 -----------(2)
Solving through Elimination:
ㅤaㅤ+ㅤ2dㅤ=ㅤ4
± aㅤ±ㅤ8dㅤ= ±8
=> -6d = 12
= d = 12/-6
= d = –2
Value of A:
a + 2d = 4
a + 2(-2) = 4
a -4 = 4
a = 4+4
a = 8
The Term which is 0 :-
aⁿ = 0, n = ?, d = –2, a = 8
=> aⁿ = a + ( n-1 ) d
=> 0 = 8 + ( n-1 ) (–2)
=> 0 = 8 –2n + 2
=> 0 = 10 – 2n
=> –10 = -2n
=> 10 = 2n
=> 5 = n
★ 5th Term is 0.
HOPE IT HELPS
MARK BRAINLIEST PLS :)
Similar questions