Math, asked by sarojasaroja3365, 1 month ago

if the 3rd and the 9th term of an ap are 4 and -8 respectively find the 25th term​

Answers

Answered by ripinpeace
160

-40

Step-by-step explanation:

Given -

  • The 3rd term of an A.P is 4.--------(1)
  • The 9rd term of the A.P is -8.------(2)

To find -

  • The 25th term.

Solution -

 \longmapsto \rm{ \bf{a {\tiny{3}} = 4} \:  \:  \:  \:  \:  \:  \:  \{from \: (1) \}}

 \longmapsto \rm{ \bf{a  + 2d = 4}}

 \longmapsto \rm{ \bf \green{a  = 4 - 2d} \:  \:  \:  \:  \:  \:  \: (3)}

 \longmapsto \rm{ \bf{a {\tiny{9}} =  - 8} \:  \:  \:  \:  \:  \:  \:  \{from \: (2) \}}

 \longmapsto \rm{ \bf{a  + 8d =  - 8} }

{ \longmapsto \rm{ \bf{4 - 2d  + 8d =  - 8}  \:  \:  \:  \:  \{from \: {3 \} }}}

 \longmapsto \rm{ \bf{4 + 6d =  - 8} }

 \longmapsto \rm{ \bf{ 6d =  - 8 - 4} }

 \longmapsto \rm{ \bf{ 6d =  -  12} }

 \longmapsto \rm{ \bf{ d =   \dfrac{ \cancel{ - 12}  \:  \: ^{ - 2} }{ \cancel6} } }

 \longmapsto \rm{ \bf \orange{ d =  - 2}  \:  \:  \:  \:  \:  \{putting \: in \: (3) \}}

 \longmapsto \rm{ \bf {a  = 4 - 2( - 2)} }

 \longmapsto \rm{ \bf {a  = 4  + 4} }

 \longmapsto \rm{ \bf \pink {a  = 8} }

 \rm{Now \: { \bf{a {\tiny{25}} = a + 24d}}}

  \longmapsto\rm{ { \bf{a {\tiny{25}} = 8 + 24( - 2)}}}

  \longmapsto\rm{ { \bf{a {\tiny{25}} = 8  - 48}}}

  \longmapsto\rm{ { \bf \blue{a {\tiny{25}} =  - 40}}}

Similar questions