Math, asked by jayeolaadejobi, 3 months ago

if the 3rd term of a GP is 27 and the 12th term is 315, find the GP​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an geometric sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a {r}^{n - 1} }}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • r is the common ratio.

Tʜᴜs,

↝ 3ᵗʰ term is,

\rm :\longmapsto\:a_3\:=\:a {r}^{3 - 1}

\rm :\longmapsto\:a_3\:=\:a {r}^{2}

➣ It is given that 3ᵗʰ term is 27.

\bf\implies \: {ar}^{2} = 27 -  -  - (1)

Aɢᴀɪɴ,

↝ 12ᵗʰ term is,

\rm :\longmapsto\:a_{12}\:=\:a {r}^{12 - 1}

\rm :\longmapsto\:a_{12}\:=\:a {r}^{11}

➣ It is given that m12ᵗʰ term is 315.

\bf\implies \: {ar}^{11} = 315 -  -  - (2)

Now,

On dividing equation (1) by equation (2), we get

\rm :\longmapsto\:\dfrac{ {ar}^{11} }{ {ar}^{2} }  = \dfrac{315}{27}

\rm :\longmapsto\: {r}^{9} =  \dfrac{35}{3}

\bf\implies \:r =  {\bigg(\dfrac{35}{3} \bigg) }^{\dfrac{1}{9} }

On substituting the value of r in equation (1), we get

\rm :\longmapsto\:a{\bigg(\dfrac{35}{3} \bigg) }^{\dfrac{2}{9} } = 27

\rm :\longmapsto\:a = 27 \times {\bigg(\dfrac{35}{3} \bigg) }^{\dfrac{ - 2}{9} }

Hence,

\rm :\longmapsto\:a_1\: = 27 {\bigg(\dfrac{35}{3} \bigg) }^{\dfrac{ - 2}{9} }

\rm :\longmapsto\:a_2\: =ar =  27 {\bigg(\dfrac{35}{3} \bigg) }^{\dfrac{ - 2}{9}} \times {\bigg(\dfrac{35}{3} \bigg) }^{\dfrac{1}{9}} = 27 {\bigg(\dfrac{35}{3} \bigg) }^{\dfrac{ - 1}{9}}

\rm :\longmapsto\:a_3\: = 27

Therefore,

The required GP series is

\rm :\longmapsto\:27{\bigg(\dfrac{35}{3} \bigg) }^{\dfrac{ - 2}{9} }, \: 27{\bigg(\dfrac{35}{3} \bigg) }^{\dfrac{ - 1}{9} },27, -  -  -  -

Additional Information :-

Sum of n terms of Geometric Progression

\begin{gathered}\begin{gathered}\bf\: S_n = \begin{cases} &\sf{a\bigg(\dfrac{ {r}^{n}  - 1}{r - 1} \bigg)}  \: if \: r \ne \: 1\\ &\sf{na \:  \: if \: r = 1} \end{cases}\end{gathered}\end{gathered}

Similar questions