Math, asked by BhawnaAggarwalBT, 6 months ago

If the 6th term in the expansion of
( \frac{1}{ {x}^{ \frac{8}{3} }  }  +  {x}^{2}   log_{10}(x)  {)}^{8}  \\
is 5600, then x equals
(1) 1
(3) 10
(2) log, 10
(4) r does not exist​

Answers

Answered by Anonymous
28

Question :

If the 6th term in the expansion of \sf[\dfrac{1}{x^{\frac{8}{3}}}+x^2\:\log_{10}(x)]^8 is 5600

then find the value of x .

Theory :

Binomial Theorem

If x and a are real number , then for all n € N,

\sf\:(x+a)^n=\sum\limits_{r = 0}^{n}\:\:^{n}C_r\:x^{n-r}\:a^r

Genral term

\sf\:T_{r+1}=^{n}C_r\:x^{n-r}\:a^r

Solution :

Given : 6th term in expansion of \sf[\dfrac{1}{x^{\frac{8}{3}}}+x^2\:\log_{10}(x)]^8 is 5600

We know that

\sf\:T_{r+1}=^{n}C_r\:x^{n-r}\:a^r

Thus , 6th term in the given binomial expression:

\sf\implies\:T_6=T_{5+1}=^{8}C_5(\dfrac{1}{x^{\frac{8}{3}}})^3\:(x^2\:\log_{10}\:x)^5

\sf\implies\:T_6=^{8}C_5\:\dfrac{1}{x^8}\:x^{10}\:(\log_{10}\:x)^5

\sf\implies\:T_6=^{8}C_5\:\dfrac{x^{10}}{x^8}\:(\log_{10}\:x)^5

\sf\implies\:T_6=^{8}C_5\:x^2\:(\log_{10}\:x)^5

We know that

\sf\green{^{n}C_r=\dfrac{n\:!}{r\:!(n-r)\:!}}

Then ,

\sf\:T_6=\dfrac{8\:!}{5\:!\times3\:!}\:x^2\:(\log_{10}\:x)^5

\sf\implies\:5600=56\times\:x^2\:(\log_{10}\:x)^5

\sf\implies\:100=x^2\:(\log_{10}\:x)^5

\sf\implies\:10^2\:(\log_{10}\:10)^5=x^2\:(\log_{10}\:x)^5

On Comparing :

\rm\blue{x=10}

Therefore , correct option is b) x= 10

Answered by jasprit155
1

Answer:

x=10 is the right answer

Similar questions