Math, asked by imsraj007, 5 months ago

If the 7th term of a H.P. is 8 and the 8th term is 7. Then find the 28th term.

Answers

Answered by Anonymous
9

Correct Question

  • If the 7th term of a A.P. is 8 and the 8th term is 7. Then find the 28th term.

Given

  • 7th term of the A.P = 8
  • 8th term of the A.P = 7

To find

  • 28th term of the A.P.

Solution

  • Let us understand clearly.

We have two terms of the A.P , we want the first term and the common difference of the A.P.

As we know, we can write

\tt\longrightarrow{a_7 = 8}

\tt\longrightarrow{a + 6d = 8}⠀⠀.... [1]

Similarly,

\tt\longrightarrow{a_8 = 7}

\tt\longrightarrow{a + 7d = 7}⠀⠀.... [2]

\: \: \: \: \: \: \: \: \: \:\underline{\sf{\red{Subtracting\: [1]\: from\: [2]}}}

\tt\longmapsto{a + 7d - (a + 6d) = 7 - 8}

\tt\longmapsto{\cancel{a} + 7d - \cancel{a} - 6d = -1}

\tt\longmapsto{d = -1}

\: \: \: \: \: \: \: \: \: \:\underline{\sf{\red{Putting\: the\: value\: of\: d\: in\: [1]}}}

\tt\longmapsto{a + 6(-1) = 8}

\tt\longmapsto{a = 8 + 6}

\tt\longmapsto{a = 14}

  • Now, we have the first term (a) and common difference (d) of the A.P.

\: \: \: \: \: \: \: \: \: \:\underline{\sf{\red{Finding\: 28th\: term}}}

\: \: \: \: \: \: \: \: \: \: \: \: \boxed{\bf{\bigstar{a_n = a + (n - 1)d{\bigstar}}}}

\tt:\implies\: \: \: \: \: \: \: \: {a_{28} = 14 + (28 - 1)(-1)}

\tt:\implies\: \: \: \: \: \: \: \: {a_{28} = 14 + 27(-1)}

\tt:\implies\: \: \: \: \: \: \: \: {a_{28} = 14 - 27}

\tt:\implies\: \: \: \: \: \: \: \: {a_{28} = -13}

Hence,

  • 28th term of the A.P is -13.

Anonymous: Superb ❤️
Similar questions