Math, asked by shravaniombase, 2 months ago

if the 7th term of an ap is 1/12 and 12th term is 1/7 then it's 168th term is​

Answers

Answered by Mohibwallah
1

Step-by-step explanation:

1/12=a+(7-1)d. ______________[1]

1/7=a+(12-1)d. ______________[2]

from [1] and [2],

1/12 - 1/7 = -5d

5/84 = 5d

d= 1/84 ]-----------------

a = 1/12 - 1/14

a = 1/84 ]---------------

T = a + (168-1)d

= 1/84 + (168-1) 1/84

--------------------[T = 2 ]--------------------------

Answered by LoverBoy346
0

Answer:

2

Step-by-step explanation:

Given :-

 \bull \: \:  \:  seventh \:  term, a_7= \frac{1}{12}

  \bull \:  \: twelvth  \: term,a_{12 }=  \frac{1}{7}

To find :-

 \bull \:  \: one-sixty  \: eighth \:  term, a_{168}

Now using the given conditions,

a_7 = a  + (7 - 1)d =  \frac{1}{12}

 \implies \: a + 6d =  \frac{1}{12}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (1)

a_{12} = a + (12 - 1)d =  \frac{1}{7}

 \implies \: a + 11d =  \frac{1}{7}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (2)

Subtracting equation 1 from 2

 \not \: a + 6d =  \frac{1}{12} \\ \not a + 11d =  \frac{1}{7} \\   \underline{- \:  \:  \:  \:  \:   -   \: \:  \:  \:  \:  - } \\  - 5d =  \frac{ - 5}{84}

 - 5d =   -  \frac{5}{84}

 \boxed{d =  \frac{1}{84} }

Now put the value of d in equation 1

a + 6( \frac{1}{84} ) =  \frac{1}{12}

a +  \frac{6}{84}  =  \frac{1}{12}

a =  \frac{1}{12}  -  \frac{6}{84}

a =  \frac{7 -  6}{84}

</u></em></strong><strong><em><u>\</u></em></strong><strong><em><u>b</u></em></strong><strong><em><u>o</u></em></strong><strong><em><u>x</u></em></strong><strong><em><u>e</u></em></strong><strong><em><u>d</u></em></strong><strong><em><u>{</u></em></strong><strong><em><u>a =  \frac{1}{84} </u></em></strong><strong><em><u>}</u></em></strong><strong><em><u>

Now 168th term will be

a_{168} =  \frac{1}{84}  +  \frac{167}{84}

a_{168} =  \frac{168}{84}

 \boxed{a_{168} = 2}

Hence it's 168 term will be 2

Similar questions